புகுஷிமா விபத்துக்குப் பிறகு ஏழாண்டுகளில் உலக அணு மின்சக்தி இயக்கப் பேரவை வடித்த மேம்பாட்டு நெறிப்பாடுகள்

Featured

[ கட்டுரை – 2 ]

சி. ஜெயபாரதன் B.E.(Hons) P.Eng (Nuclear) கனடா

+++++++++++++++++

  1. http://afterfukushima.com/tableofcontents
  2. http://afterfukushima.com/book-excerpt
  3. https://youtu.be/YBNFvZ6Vr2U
  4. https://youtu.be/HtwNyUZJgw8
  5. https://youtu.be/UFoVUNApOg8
  6. http://www.cornell.edu/video/five-years-after-fukushima-lessons-learned-nuclear-accidents
  7. https://youtu.be/_-dVCIUc25o
  8. https://youtu.be/kBmc8SQMBj8
  9. https://www.statista.com/topics/1087/nuclear-power/
  10. https://www.statista.com/statistics/238610/projected-world-electricity-generation-by-energy-source/
  11. https://youtu.be/ZjRXDp1ubps
  12. https://www.thinkingpower.ca/PDFs/NuclearPower/NP_3_2_Crawford.pdf

முன்னுரை: 2011 மார்ச்சு மாதம் 11 ஆம் தேதி ஜப்பான் கிழக்குப் பகுதியைத் தாக்கிய 9 ரிக்டர் அளவு அசுர நிலநடுக்கத்தில் கடல் நடுவே 50 அடி (14 மீடர்) உயரச் சுனாமி எழுந்து நாடு, நகரம், வீடுகள், தொழிற்துறைகள் தகர்ந்து போயின.  சுமார் 10,000 பேர் உயிரிழந்தனர்.  மேலும் 17,000 பேர் இன்னும் காணப்பட வில்லை.  சுமார் 80,000 பேர் புலப்பெயர்ச்சி செய்யப் பட்டுள்ளார். புகுஷிமா வின் நான்கு அணுமின் உலைகளின் எரிக்கோல்கள் வெப்பத் தணிப்பு நீரின்றி, பேரரளவு சிதைந்து, ஹைடிரஜன் வாயு சேமிப்பாகி வெளியேறி மேற்தளக் கட்டங்கள் வெடித்தன.  அத்துடன் ஒன்று அல்லது இரண்டு அணு உலைக் கோட்டை அரணில் பிளவு ஏற்பட்டுக் கதிரியக்கப் பிளவுத் துணுக்குகள் (Radioactive Fission Products) சூழ்வெளியிலும், கடல் நீரிலும் கலந்தன.  அந்தப் பேரிழப்பால் பல்லாயிரம் பேர் உயிரிழந்தும் பிழைத்துக் கொண்டோர் வீடிழந்தும், தமது உடமை இழந்தும், சிலர் கதிரியக்கத்தாலும் தாக்கப்பட்டார்.  நான்கு  அணுமின் உலை களில் பெருஞ் சேதம் ஏற்பட்டதால் ஜப்பான் நாட்டில் 2720 மெகா வாட் அணு மின்சக்தி (MWe) உற்பத்தி குன்றி அண்டை நகரங்களில் பேரளவு மின்வெட்டுப் பாதிப்புகள் நேர்ந்துள்ளன.

உலக நாடுகள் 21 ஆம் நூற்றாண்டில் அணுமின் நிலையங்களை ஒரு தேவையான தீங்கு எரிசக்திக் கூடங்கள் என்று கருதியே இயக்கி வருகின்றன.  ஐயமின்றிப் பேரளவு மின்சாரத்தைச் சிறிய இடத்தில் உற்பத்தி செய்ய அணுசக்திக்குப் போட்டியான, நிகரான ஓர் எரிசக்தி தற்போதில்லை.  ஒரு மோட்டார் காரை உற்பத்தி செய்ய சுமார் 10,000 யந்திரச் சாதனங்கள், உபகரணங் கள் தேவைப்படு கின்றன.  அதுபோல் ஓர் அணுமின்சக்தி நிலையத்தை அமைத்து இயக்க மில்லியன் கணக்கில் யந்திரச் சாதனங்கள், உபகரணங்கள் அவசியம் தயாரிக்கப்பட வேண்டும்.  மின்சாரத்தைப் பரிமாறுவதோடு இந்த யந்திர யுகத்தில் பாதுகாப்பாய் இயங்கி வரும் பல்வேறு அணுமின் நிலையங்களால் மில்லியன் கணக்கில் பலருக்கு வேலையும், ஊதியமும், நல்வாழ்வும் கிடைத்து வருகின்றன.

கட்டுரை ஆசிரியர்

தற்போது முப்பதுக்கு மேற்பட்ட உலக நாடுகளில் 447 அணுமின் நிலையங்கள் [அமெரிக்காவில் திரி மைல் தீவு, ரஷ்யாவில் செர்நோபில் நிலையம், ஜப்பானில் புகுஷிமாவின் நான்கு அணுமின் உலைகள் ஆகியவற்றைத் தவிர] பாதுகாப்பாக இயங்கி சுமார் 370,000 MWe (16%) மின்சார ஆற்றலைப் பரிமாறி வருகின்றன.  மேலும் 56 நாடுகளில் 284 அணு ஆராய்ச்சி உலைகள் அமைப்பாகி ஆய்வுகள் நடத்தப் பட்டு வருகின்றன.  அணு மின்சக்தி நிலையங்கள் 1950 ஆண்டு முதல் தோன்றி மின்சாரம் அனுப்பத் துவங்கிய பிறகு தொடர்ந்த 60 ஆண்டு களில் ஆறு பெரிய கதிரியக்க விபத்துகள் நிகழ்ந்துள்ளன.  2011 ஆண்டு மார்ச்சு வரை உலக அணு உலைகளில் சராசரி 10 ஆண்டுக்கு ஒருமுறை ஒரு பெரு விபத்து நேர்ந்திருக்கிறது !  ஜப்பான் புகுஷிமா அணு உலைகள் விபத்துக்குப் பிறகு எதிர்கால அணுமின்சக்திக்கு உலக நாடுகள் இன்னும் ஆதரவு அளிக்கின்றனவா அல்லது எதிர்ப்பு அறிவிக்கின்றனவா என்பதை விளக்கமாய் ஆராய்வதே இந்தக் கட்டுரையின் குறிக்கோள்.

உலக அணு மின்சக்தி இயக்கக் கண்காணிப்புக் கூட்டுப் பேரவை [ WANO -World Association of Nuclear Operators ] விதித்த மேம்பாடு நெறி முறைகள்

2011 புகுஷிமா பெரு விபத்துக்குப் பிறகு, பாடங்கள் கற்று நான்கில் ஒரு தலையகமாக இருக்கும் இங்கிலாந்து லண்டன்  வானோ பேரவையில் வடிக்கப்பட்ட மேம்பாட்டு நெறிப்பாடுகள் கீழே தரப்பட்டுள்ளன.  அவை சிக்கலானவை, சிரமமானவை, சவாலானவை.  அவற்றை நிறைவேற்ற மிக்க நிதிச் செலவும், நேரச் செலவும் ஏற்படும். அவற்றுக்கு மெய் வருந்திய உழைப்பும், குறிப்பணியும் அவசியம் என்று, அவற்றை வெளியிட்ட வானோ ஆளுநர், பீட்டர் புரோசெஸ்கி சொல்கிறார்.

  1.  புகுஷிமா விபத்தில் கற்றுக் கொண்ட பாதுகாப்புப் பாடப் பணிகள் உலக முழுமையாக சுமார் 6000.
  2. அவற்றுள் முக்கியமானவை :  அபாய நிகழ்ச்சி காப்பு வினைகள்,  அபாய நிகழ்ச்சி உதவிகள், அபாய நிகழ்ச்சி பராமறிப்பு வினைகள், அபாய நிகழ்ச்சி அறிவிப்பு முறைகள், கதிரியக்க திரவம் சேமிப்புக் கலன்கள், பயிற்சி பெற்ற ஏராளமான பணியாளர், தோழ நாடுகள் முதல் உளவு, அடுத்த உளவு, முழு உளவு, ஆய்வு அறிக்கை வெளியீடு. வானோ உலக நாட்டு உளவு & அறிக்கை வெளியீடு.

As of November 28, 2016 in 31 countries 450 nuclear power plant units with an installed electric net capacity of about 392 GW are in operation and 60 plants with an installed capacity of 60 GW are in 16 countries under construction.

Country

In operation

Under construction

Number

Electr. net output
MW

Number

Electr. net output
MW
Argentina

3

1.632

1

25

Armenia

1

375

Belarus

2

2.218

Belgium

7

5.913

Brazil

2

1.884

1

1.245

Bulgaria

2

1.926

Canada

19

13.524

China

36

31.402

20

20.500

Czech Republic

6

3.930

Finland

4

2.752

1

1.600

France

58

63.130

1

1.630

Germany

8

10.799

Hungary

4

1.889

India

22

6.225

5

2.990

Iran

1

915

Japan

43

40.290

2

2.650

Korea, Republic

25

23.133

3

4.020

Mexico

2

1.440

Netherlands

1

482

Pakistan

4

1.005

3

2.343

Romania

2

1.300

Russian Federation

36

26.557

7

5.468

Slovakian Republic

4

1.814

2

880

Slovenia

1

688

South Africa

2

1.860

Spain

7

7.121

Sweden

10

9.651

Switzerland

5

3.333

Taiwan, China

6

5.052

2

2.600

Ukraine

15

13.107

2

1.900

United Arab Emirates

4

5.380

United Kingdom

15

8.918

USA

99

98.868

4

4.468

Total

450

391.915

60

59.917

Nuclear power plants world-wide, in operation and under construction, IAEA as of 27 November 2016

அணுமின் உலைகள் எதிர்காலம் பற்றி அகில நாடுகளின் தீர்மானங்கள்

புகுஷிமா அணுமின் உலைகளில் நேர்ந்த வெடிப்பு நிகழ்ச்சிகளை நேரடியாகக் கண்டு பயந்து போன ஆயிரம் ஆயிரம் பொது மக்களின் வெறுப்பும், எதிர்ப்பும் வேறு.  அணுசக்தி உற்பத்தி மீது அகில நாட்டு அரசுகளின் ஆதரவும், முடிவும் வேறு !  பொது மக்கள் பல்லாண்டுகள் ஒரு மனதாய் அவற்றை எதிர்த்தாலும் இப்போது உலக நாடுகளில் இயங்கிக் கொண்டிருக்கும் 440 அணுமின் நிலையங்கள் உடனே நிறுத்தம் அடையப் போவ தில்லை.  இப்போது (ஜூன் 14, 2011) கட்டப்பட்டு வரும் அணுமின் உலைகளின் எண்ணிக்கை : 60.  அடுத்துத் திட்டமிடப் பட்டவை : 155.  எதிர்கால எதிர்ப்பார்ப்பு அணுமின் உலைகள் : 338.  புகிஷிமா அணு உலை விபத்தில் கற்றுக் கொள்ளும் முதற்பாடம் : 1960 ஆண்டுகளில் டிசைன் செய்யப் பட்ட முதல் வகுப்புப் பிற்போக்கு அணுமின் உலைகள் விரைவில் நிச்சயம் மூடப்படும் நிரந்தரமாய்.  முப்பது வருடமாய் இயங்கி வரும் அணுமின் உலைகள் சில மீளாய்வு செய்யப் பட்டுப் பழைய சாதனங்கள் புதுப்பிக்கப் பட்டு ஆயுட் காலம் இன்னும் 5 அல்லது 10 ஆண்டுகள் நீடிக்கப் படலாம் அல்லது அதற்கு நிதியின்றேல் நிரந்தரமாய் நிறுத்தம் அடையலாம்.

 

 

  1. https://youtu.be/CPeN7GhTpz4
  2. https://www.thegreenage.co.uk/cos/nuclear-power-in-france/
  3. https://youtu.be/4YgmCu7dfS4
  4. https://www.dw.com/en/france-sticking-with-nuclear-power/av-38397323
  5. https://www.businessinsider.com/countries-generating-the-most-nuclear-energy-2014-3
  6. https://www.youtube.com/watch?v=TZV2HRKNvao
  7. https://www.youtube.com/watch?v=HMrQJoN-Ks4
  8. https://www.youtube.com/watch?v=kr4mFLws3BM
  9. https://www.youtube.com/watch?v=YfulqRdDbsg
  10. https://www.youtube.com/watch?v=Hn-P3qnlB10

++++++++++++++++++++++++

பிரிட்டிஷ் அரசாங்கம் புதிய முறைப்பாடு அணுமின் நிலையங்களை 2025 ஆண்டுக்குள் கட்டப் போகும் திட்டத்தை இன்று அறிவித்துள்ளது.  அவை தேர்ந்தெடுக்கப்படும் எட்டுத் தளங்களில் நிறுவப்படும்.  அதை அறிவித்த பிரிட்டிஷ் அமைச்சர் : எரிசக்தி மந்திரி சார்லஸ் ஹென்றி.  எதிர்கால அணுமின் நிலையத் திட்டங்களுதுக்கு நிதி ஒதுக்கு 160 பில்லியன் டாலர்.

BBC News (June 23, 2011)

Image result for nuclear power in france

ஈரோப்பியன் கூட்டுறவு நாடுகளில் உள்ள 143 அணுமின் நிலையங்களில் பிரென்ச் அணுமின் நிலைய எண்ணிக்கை : 53 (40%).  அவற்றின் மின்சக்தி பரிமாற்றம் : 75% பங்கு.  பிரென்ச் ஜனாதிபதி நிகொலஸ் சார்கோஸி “பிரான்சில் உள்ள அணுமின் நிலையங்கள் அனைத்திலும் புகுஷிமா விபத்துக்களை முன்னிட்டு ஆழ்ந்த பாதுகாப்பு இயக்க உளவுகள் செய்யப் படும்.  ஆயினும் ஜெர்மனி, இத்தாலி, சுவிட்ஜர்லாந்து ஆகிய அண்டை நாட்டு அரசாங்கங்கள் போன்று பிரான்ஸ் இயங்கும் அணுமின் நிலையங்களை நிரந்தரமாய் மூடத் தடை விதிக்காது,” என்று அறிவித்தார்.

BBC News (May 30, 2011)

Image result for nuclear power in france

பிரான்ஸ் நாட்டு அணுமின்சக்தி இயக்கத் திட்டங்களில் ஏற்படும் மாற்றங்கள்.

2018 நவம்பர் அறிப்பின்படிக் கடந்த 50 ஆண்டுகளாக

  1. பிரான்ஸ் தேசம் தற்போது தேவையான மின்சக்தி உற்பத்தியில் 75% அணுசக்தி மூலமாக பாதுகாப்பு முறையில் வெற்றிகரமாகப் பெற்று வருகிறது.  2035 ஆண்டுக்குள் அது 50% ஆகக் குறைக்கப்படும்.  அதாவது பிரான்ஸில் 17 பழைய அணுமின்சக்தி நிலையங்கள் 2035 ஆண்டுக்குள் நிறுத்தப் படும்.
  2. உலகத்திலே பேரளவு மின்சக்தி ஏற்றுமதி தொடர்ந்து செய்யும் நாடுகளில் பிரான்ஸ் முன்னணியில் நிற்கிறது. காரணம் மலிவான நிதியில் மின்சக்தி உற்பத்தியை பிரான்ஸ் செய்ய முடிகிறது.  அதலால் ஆண்டுக்கு மூன்று பில்லியன் ஈரோ [ 3.4 பில்லியன் டாலர் : ] பிரான்சுக்கு வருமானம் வருகிறது.
  3. கடந்த 50 ஆண்டுகளாக பிரான்ஸ் அணுவியல் துறை நுணுக்க சாதனங்கள் விருத்தி செய்வதில் வெற்றி பெற்றுள்ளது.  குறிப்பாக அணுவியல் எரிக்கரு உற்பத்தி ஏற்றுமதியில் செல்வாக்கு அடைந்துள்ளது.
  4. அத்துடன் சுமார் 17% பங்கு மின்சக்தி அணுவியல் எரிக்கரு மீள் சுழற்சியில் [Recycled Nuclear Fuel] கிடைக்கிறது.

+++++++++++++

Related image

French nuclear power reactors

பிரான்ஸ் எரிசக்தி உற்பத்தி மூல எருக்கள் [Energy Sources] 

2016 ஆண்டில் பிரான்சின் மின்சக்தி ஆற்றல் உற்பத்தி 556 TWh [ terra watt hours [Gross].

  1. அதில் அணுமின்சக்தியின் பங்கு : 72% [403 TWh].
  2. நீரழுத்த மின்னாற்றல் : 12%  [65 TWh],
  3. இயல்வாயு + நிலக்கரி வெப்ப மின்சக்தி 8% [45 TWh];
  4. சூரியக்கதிர் + காற்றாற்றல் :  5% [ 31 TWh ]
  5. அதாவது பிரான்ஸ் மொத்தத் தேவை மின்சக்தி : 442 TWh [6,600 KWh/cappit] : கி.வாட் ஹவர் / காப்பிட்டா.
  6. 2013 இல் வீட்டு மின்சார விலை அளவு : 8 சென்ட்/கிலோவாட் ஹவர்.  [cents/Kwh]

French nuclear power reactors

Class Reactor MWe net, each Commercial operation
900 MWE BLAYAIS 1-4
910
12/81, 2/83, 11/83, 10/83
BUGEY 2-3
910
3/79, 3/79
BUGEY 4-5
880
7/79-1/80
CHINON B 1-4
905
2/84, 8/84, 3/87, 4/88
CRUAS 1-4
915
4/84, 4/85, 9/84, 2/85
DAMPIERRE 1-4
890
9/80, 2/81, 5/81, 11/81
FESSENHEIM 1-2
880
12/77, 3/78
GRAVELINES B 1-4
910
11/80, 12/80, 6/81, 10/81
GRAVELINES C 5-6
910
1/85, 10/85
SAINT-LAURENT B 1-2
915
8/83, 8/83
TRICASTIN 1-4
915
12/80, 12/80, 5/81, 11/81
1300 MWE BELLEVILLE 1 & 2
1310
6/88, 1/89
CATTENOM 1-4
1300
4/87, 2/88, 2/91, 1/92
FLAMANVILLE 1-2
1330
12/86, 3/87
GOLFECH 1-2
1310
2/91, 3/94
NOGENT S/SEINE 1-2
1310
2/88, 5/89
PALUEL 1-4
1330
12/85, 12/85, 2/86, 6/86
PENLY 1-2
1330
12/90, 11/92
SAINT-ALBAN 1-2
1335
5/86, 3/87
N4 – 1450 MWE CHOOZ B 1-2
1500
12/96, 1999
CIVAUX 1-2

1495

1999, 2000
Total (58)
63,130

Differences in net power among almost identical reactors is usually due to differences in cold sources for cooling

“இந்த எதிர்பாராத துன்பமய நிகழ்ச்சி ஜப்பானில் எதிர்கால அணுமின்சக்தித் திட்டங்களைத் தவிர்க்கப் போவதில்லை.  புதிய அணுமின் சக்தி உற்பத்தித் திட்டங்கள் செம்மைப் படுத்தப் பட்டாலும் பெருமளவில் மாற்றம் அடையப் போவதில்லை.  இப்போதும் அணுமின்சக்தி ஆதரிப்பாளர் எண்ணிக்கை எதிர்ப்பாளர் எண்ணிக்கையை விட இரண்டரை மடங்கு (42% Versus 16%) மிகையாகவே உள்ளது.”

பேராசிரியர் அதனாஸ் தஸேவ் (Bulgarian Nuclear Forum, Energy Expert)     


“மனித இனத்துக்கு அணுமின்சக்தி மிகவும் தேவைப் படுகிறது என்பது என் தனிப்பட்ட கருத்து. அவை விருத்தி செய்யப்பட்டு மக்களுக்கு முழுமையான பாதுகாப்பு அளிப்பவை என்று உறுதிப்பாடாக வேண்டும்.  அதாவது அணு உலைகள் யாவும் பூமிக்கடியில் நிறுவப்பட வேண்டும் என்பது என் கருத்து.  அகில நாடுகளின் அணுசக்திப் பேரவை (IAEA) தாமதமின்றி அணு உலைகள் எல்லாம் அடித்தளங்களில் நிறுவப்பட சட்டமியற்ற வேண்டும்.”

ஆன்டிரே ஸெக்காரோவ் [Andrei Sakharov, Russian Nobel Laureate (May 1989)]

 

ரஷ்யாவில் எரிசக்தி ஆக்கமும், மின்சார உற்பத்தியும் அணுசக்திப் பொறித்துறைகள் இல்லாமல் தற்போது நிகழப் போவதில்லை.

ரஷ்ய ஜனாதிபதி டிமிட்ரி மெட்வெதேவ் & பிரதம மந்திரி விலாடிமிர் புட்டின் கூட்டறிக்கை.

நவீன ரஷ்ய அணுமின் உலைகளைக் கட்டுவ தென்றால் தற்போதைய பாதுகாப்பு நெறிப்பாடு விதிகள் மிகக் கடுமை யாக எழுதப்பட்டுள்ளன.  அணு உலை எரிகோல்களின் அபாய வெப்பத்தைத் தணித்துப் பாதுகாக்கப் பல்வேறு நீரனுப்பு முறைகளை நாங்கள் அமைத்தி ருக்கிறோம்.  எங்கள் நவீன AES-2006 மாடல் அணுமின் நிலையத்தில் இயக்க முறைப்பாடு, ஓய்வு முறைப்பாடு (Active & Passive Emergency Coolant Systems) என்னும் இரட்டை நீரனுப்பு ஏற்பாடுகள் எரிக்கோல்களின் அபாய வெப்பத்தை உடனே தணிக்க அணு உலையின் கோட்டைக் குள்ளேயே இரட்டைக் குழாய்ப் பைப்போடு இணைக்கப் பட்டுள்ளன.  அத்தோடு வெப்பக் கோல்கள் உருகி விட்டால் தாங்கிக் கொள்ளும் கும்பாவும் (Fuel Rods Melt Trap) கீழே அமைக்கப்பட்டு உள்ளது.  மேலும் ஓய்வு வாயு வெப்பத் தணிப்பி, நீண்ட கால அணுப்பிளவுக் கதிரியக்கச் சுத்தீகரிப்பு ஏற்பாடு, ஹைடிரஜன் மீள் இணைப்பிகள் போன்றவையும் அமைக்கப் பட்டுள்ளன.  செர்நோபில் விபத்துக்குப் பிறகு கடின முறையில் நாங்கள் கற்றுக் கொண்ட பாடங்கள் இவை யெல்லாம்.

லியோனிட் போல்ஸோவ் (Director, Institute of Safe Development of Nuclear Power Industry)

“விஞ்ஞானப் பொறியியல் நிபுணத்துவத்தில் முற்போக்கான ஜப்பானியர் எப்படி நான்கு அணுமின் உலைகளின் வெப்பத்தைக் கட்டுப்படுத்த முடியாமல் தடுமாறிப் போனார் என்று ரஷ்ய அணுசக்தித் துறையினர் குழம்பிப் போயுள்ளார்.  முடியாமைக்குக் காரணம் நிலநடுக்கம், சுனாமி ஆகிய இரு நிகழ்ச்சிகளின் கூட்டு விளைவு என்பது என் கருத்து.  எந்த அணுமின் சக்தித் திட்டமும் இந்த அசுர அளவு பூகம்பத்துக்கும் (ரிக்டர் : 9) 30 அடி உயரச் சுனாமி எதிர்பார்ப் புக்கும் டிசைன் செய்யப் படவில்லை.

விலாடிமிர் குபரேவ் (Vladimir Gubarev, Chernobyl Burial Drama Author)

 

 

 

இயங்கி வரும் 440 அணுமின் உலைகளில் அபாய வெப்பத் தணிப்பு நீரனுப்பி ஏற்பாடுகள் ஒன்றுக்கு மேல் இரட்டிக்கப் படும் அல்லது மூன்றாக்கப் படும்  இரட்டை அல்லது மூவகை அபாய டீசல் எஞ்சின் மின்சாரப் பம்ப்பு இணைப்பு அமைப்போடு, ஈர்ப்பு விசையாலோ, அழுத்த வாயுவாலோ இயங்கும் ஓய்வுத் தணிப்பு ஏற்பாடுகள் (Passive Gravity or Compressed Air Coolant Injection Systems) சேர்க்கப் படும்.  அல்லது இரண்டுக்கு மேல் பெருக்கம் அடையும்.  சேமிப் பாகும் ஹைடிரஜன் வாயுவுக்கு அணு உலை உள்ளே மீள் இணைப்பிகள் சேர்க்கப் படும்.  அபாய வெப்பத் தணிப்பு நீரோட்ட இறுதியில் பேரளவு சேரும் கதிரியக்கக் கழிவு நீர் சேமிப்புத் தடாகமும், சுத்தீகரிப்பு ஏற்பாடும் (Contaminated Waste Water Treatment Facility) இணைக்கப் படும்.  தற்போது கட்டப்பட்டு வரும் அணுமின் உலைகள் தடைப் படாமல் தொடர்ந்து நிறுவப் படும்.  திட்டமிட்ட எதிர்கால அணுமின் உலைகள் மீளாய்வு செய்யப்பட்டுக் கட்டப் படலாம்.  அல்லது புறக்கணிக்கப் படலாம்.

அணுமின் நிலைய ஐக்கிய நாட்டுக் கண்காணிப்புக் கழுகுகள் வற்புறுத்தும் புதிய பாதுகாப்பு விதிகள்

21 நாடுகள் இணைந்த ஈரோப்பியன் அணுசக்திப் பாதுகாப்பு ஆணையகம் (European Nuclear Safety Regulatory Group -ENSRG) தனது அழுத்தமான உளவு விதியை வெளியிட்டுள்ளது.  அதன் விதிப்படி நிலநடுக்கம், வெள்ளம், பேரலை அடிப்பு, மூர்க்கர் தாக்குதல், விமான வீழ்ச்சிபோன்ற பயங்கர விளைவுகளைத் தூண்டும் அபாயச் சம்பவங்களையும், பாதிக்கபட்ட பொது மக்களின் புலப் பெயர்ச்சியையும் எப்படிக் கையாளுவது என்பது ஆழ்ந்து தீவிரமாய் ஆராயப்படும்.  புகுஷிமா அணுமின் உலை விபத்துகளை முன்வைத்து 2011 மே 31 ஆம் தேதி வரை உலக நாடுகள் அணுசக்தி நிலையங்கள் இயக்கத்தைப் பற்றிச் செய்துள்ள முடிவுகளைக் கீழே காணலாம் :

புகுஷிமா அணுமின் உலை விபத்துச் சிக்கல்கள் போல் மீண்டும் நேராதிருக்க ஐக்கிய நாட்டுக் கண்காணிப்புக் கழுகுத் தலைவர், யுகியா அமானோ (Yukiya Amano, Head of UN Watchdog) அகில உலக அணுமின் நிலையங்களின் பாதுகாப்பு அமைப்புகளை ஆழ்ந்து உளவி 18 மாதங்களுக்குள் முடிவுகளைத் தெரிவிக்க வேண்டும் என்று அறிவித்திருக்கிறார்.  இந்த அறிவிப்பை முன்னிட்டு 150 உலக நாடுகள் வியன்னா அகில் நாட்டு அணுசக்திப் பேரவை (IAEA) நிறுவகத் தளத்தில் கூடப் போகின்றன. மேலும் அவர் கூறியது: புகுஷிமா அணுமின் உலைகளின் விபத்துகள் பொது மக்களைப் பேரளவில் பயமுறுத்தி உள்ளதால், அவருக்கு நேர்மையாய்ப் பதிலளிக்க வேண்டிய கடமையும் IAEA வுக்கு நேர்ந்திருக்கிறது.  அணுமின் நிலையங்களின் அபாயப் பாதுகாப்பு முறைகள் மீது பொது நபருக்கு நம்பிக்கை போய்விட்டது.  ஆதலால் IAEA அணுமின் நிலைய இயக்க அதிகாரிகளுக்குக் கடுகையான கண்காணிப்பு விதிகளை விடுத்து அவற்றை எல்லா அணுமின் நிலையங்களிலும் கடைப்பிடிக்க வேண்டும் என்றும் வற்புறுத்தியுள்ளது.

 

முடிவுரை:   பெரும்பான்மையான உலக நாடுகள் 21 ஆம் நூற்றாண்டில் அணுமின் நிலையங்களைத் தேவையான தீங்கு (Necessary Evil) என்று கருதுகின்றன.  ஐயமின்றிப் பேரளவு மின்சாரத்தைச் சிறிய இடத்தில் உற்பத்தி செய்ய அணுசக்திக்குப் போட்டியான, நிகரான எரிசக்தி தற்போது இருப்ப தாகத் தெரியவில்லை.  மோட்டார் வாகனம் ஒன்றை உற்பத்தி செய்ய சுமார் 10,000 யந்திரச் சாதனங்கள், உபகரணங்கள் தேவைப்படுகின்றன.  அதுபோல் ஓர் அணுமின் நிலையத்தை அமைத்து இயக்க மில்லியன் கணக்கில் யந்திரச் சாதனங்கள், உபகரணங்கள் அவசியம் தயாரிக்கப்பட வேண்டும்.  மின்சாரத்தைப் பரிமாறுவதோடு இந்த யந்திர யுகத்தில் பாதுகாப்பாய் உலகில் இயங்கி வரும் பல்வேறு அணுமின் நிலையங்களால் மில்லியன் கணக்கில் பலருக்கு வேலையும், ஊதியமும், நல்வாழ்வும் கிடைத்து வருவதில் சிறிதேனும் ஐயமில்லை.

(தொடரும்)

***************

தகவல்:

1.  Backgrounder on Earthquakes & Nuclear Power in Japan   (March 11, 2011)

2. Japan Nuclear Industry is in Meltdown [Sep 28, 2002]

3. Monju Fast Breeder Startup (Feb 10, 2010)

4.  Nuclear {Power in Japan (March 30, 2011)

5. Russia & India Report –  Lessons of Fukushima – Expert Opinions.  (March 28, 2011)

6 Macleans Magazine – Japan Fearing the Fallout  (March 28, 2011)

7. Monju Fast Breeder Restarts after 14 years of Suspension  (May 12, 2010)

8.  Fukushima & Chernobyl Compared (April 11, 2011)

9.  World Nuclear Association Report – Nuclear Power in Japan & Nuclear Safety and Seurity in the wake of Fukushima Accident (Updated in April 2011)

10. Fukushima : What Happened and What Needs to be done ? (April 10, 2011)

11. Japan Fukushima Damaged Nuclear Reactors’ Status (April 13, 2011)

12. Setbacks at Japan (Fukushima) Nuclear Plants (May 12, 2011)

13. World Nuclear Association Report : Fukushima Accident 2011 (May 30, 2011)

14. World Nuclear Association Report : Policy Responses to the Fukushima Accident. (May 31, 2011)

15 Wikipedea Report : http://en.wikipedia.org/wiki/Paks_Nuclear_Power_Plant(Hungarian Paks Atomic Plant Loss of Coolant Accident) (May 27, 2011)

16. Wikipedea Report :  List of Civilian Nuclear Accidents (June 4, 2011)

17. BBC News – Japan Nuclear Crisis : Fukushima Cold Shutdown for January 2012 (May 17, 2011)

18. BBC News : Europe, French Nuclear Policy  (May 31, 2011)

19 BBC News – Fukushima Lessons may take 10 years to Learn By : Richard Black (June 8, 2011)

20. Environment News Service – Analysis: Japan Underestimated Fukushima Radiation Releases By Half – Author Charles Diggs (June 8, 2011)

21. IAEA Briefing on Fukushima Nuclear Accident (June 2, 2011)

22 Wikipedea http://en.wikipedia.org/wiki/List_of_nuclear_reactors (List of World Nuclear Reactors) (June 8, 2011)

23 http://www.world-nuclear.org/info/reactors.html (World Nuclear Opeations) (June 14, 2011)

24. Nuclear Watchdog wants new safety checks after Fukushima (June 20, 2011)

25. BBC News : New UK Nuclear Plant Sites Named  (June 23, 2011)

26. https://www.japantimes.co.jp/news/2018/03/09/national/fukushima-no-1-cleanup-continues-radioactive-water-rumors-also-prove-toxic/#.XI0k

27.  https://www.theguardian.com/environment/2018/jun/03/was-fallout-from-fukushima-exaggerated

28. https://www.iaea.org/newscenter/focus/fukushima/status-update  [March 14, 2019]

29. https://www.fairewinds.org/fukushima-latest-updates  [January 18, 2019]

30. http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/france.aspx  [November 2018]

31http://www.nuclearpowerdaily.com/reports/Glowing_results_for_nuclear_power_at_Frances_EDF_999.html  [February 15, 2019] 

32. https://en.wikipedia.org/wiki/Nuclear_power_in_France  [March  10, 2019]

33. http://www.cornell.edu/video/five-years-after-fukushima-lessons-learned-nuclear-accidents

34.  https://www.japantimes.co.jp/news/2018/03/29/national/seven-years-radioactive-water-fukushima-plant-still-flowing-ocean-study-finds/#.XJaYFR-JK70  [February 21, 2018]

35. https://www.statista.com/statistics/268154/number-of-planned-nuclear-reactors-in-various-countries/

36. https://www.statista.com/topics/1087/nuclear-power/

37. https://www.statista.com/statistics/238610/projected-world-electricity-generation-by-energy-source/

38. https://www.iaea.org/newscenter/news/iaea-releases-country-nuclear-power-profiles-2017

39. https://world-nuclear.org/getmedia/b392d1cd-f7d2-4d54-9355-9a65f71a3419/performance-report.pdf.aspx  [WANO 2018 REPORT]

40. http://www.world-nuclear-news.org/RS-WANO-reports-on-post-Fukushima-improvements-27061803.html  [June 27, 2018]

41. https://www.thinkingpower.ca/PDFs/NuclearPower/NP_3_2_Crawford.pdf  [WANO – WORLD NUCLEAR POWER WATCH DOG]

42. https://www.euronuclear.org/info/encyclopedia/n/nuclear-power-plant-world-wide.htm   [March 24, 2019]

 

************************
S. Jayabarathan  (jayabarathans@gmail.com)  March 24, 2019  [R-2]
http:jayabarathan.wordpress.com/

2011 புகுஷிமா அணு உலை விபத்துக்குப் பிறகு, 2018 இல் பிரான்ஸ் நாட்டு அணு மின்சக்தி உற்பத்தி மாற்றங்கள்

Featured

சி. ஜெயபாரதன் B.E.(Hons) P.Eng (Nuclear) கனடா

  1. https://youtu.be/CPeN7GhTpz4
  2. https://www.thegreenage.co.uk/cos/nuclear-power-in-france/
  3. https://youtu.be/4YgmCu7dfS4
  4. https://www.dw.com/en/france-sticking-with-nuclear-power/av-38397323
  5. https://www.businessinsider.com/countries-generating-the-most-nuclear-energy-2014-3
  6. https://www.youtube.com/watch?v=TZV2HRKNvao
  7. https://www.youtube.com/watch?v=HMrQJoN-Ks4
  8. https://www.youtube.com/watch?v=kr4mFLws3BM
  9. https://www.youtube.com/watch?v=YfulqRdDbsg
  10. https://www.youtube.com/watch?v=Hn-P3qnlB10

++++++++++++++++++++++++

பிரிட்டிஷ் அரசாங்கம் புதிய முறைப்பாடு அணுமின் நிலையங்களை 2025 ஆண்டுக்குள் கட்டப் போகும் திட்டத்தை இன்று அறிவித்துள்ளது.  அவை தேர்ந்தெடுக்கப்படும் எட்டுத் தளங்களில் நிறுவப்படும்.  அதை அறிவித்த பிரிட்டிஷ் அமைச்சர் : எரிசக்தி மந்திரி சார்லஸ் ஹென்றி.  எதிர்கால அணுமின் நிலையத் திட்டங்களுதுக்கு நிதி ஒதுக்கு 160 பில்லியன் டாலர்.

BBC News (June 23, 2011)

Image result for nuclear power in france

ஈரோப்பியன் கூட்டுறவு நாடுகளில் உள்ள 143 அணுமின் நிலையங்களில் பிரென்ச் அணுமின் நிலைய எண்ணிக்கை : 53 (40%).  அவற்றின் மின்சக்தி பரிமாற்றம் : 75% பங்கு.  பிரென்ச் ஜனாதிபதி நிகொலஸ் சார்கோஸி “பிரான்சில் உள்ள அணுமின் நிலையங்கள் அனைத்திலும் புகுஷிமா விபத்துக்களை முன்னிட்டு ஆழ்ந்த பாதுகாப்பு இயக்க உளவுகள் செய்யப் படும்.  ஆயினும் ஜெர்மனி, இத்தாலி, சுவிட்ஜர்லாந்து ஆகிய அண்டை நாட்டு அரசாங்கங்கள் போன்று பிரான்ஸ் இயங்கும் அணுமின் நிலையங்களை நிரந்தரமாய் மூடத் தடை விதிக்காது,” என்று அறிவித்தார்.

BBC News (May 30, 2011)

Image result for nuclear power in france

பிரான்ஸ் நாட்டு அணுமின்சக்தி இயக்கத் திட்டங்களில் ஏற்படும் மாற்றங்கள்.

2018 நவம்பர் அறிப்பின்படிக் கடந்த 50 ஆண்டுகளாக

  1. பிரான்ஸ் தேசம் தற்போது தேவையான மின்சக்தி உற்பத்தியில் 75% அணுசக்தி மூலமாக பாதுகாப்பு முறையில் வெற்றிகரமாகப் பெற்று வருகிறது.  2035 ஆண்டுக்குள் அது 50% ஆகக் குறைக்கப்படும்.  அதாவது பிரான்ஸில் 17 பழைய அணுமின்சக்தி நிலையங்கள் 2035 ஆண்டுக்குள் நிறுத்தப் படும்.
  2. உலகத்திலே பேரளவு மின்சக்தி ஏற்றுமதி தொடர்ந்து செய்யும் நாடுகளில் பிரான்ஸ் முன்னணியில் நிற்கிறது. காரணம் மலிவான நிதியில் மின்சக்தி உற்பத்தியை பிரான்ஸ் செய்ய முடிகிறது.  அதலால் ஆண்டுக்கு மூன்று பில்லியன் ஈரோ [ 3.4 பில்லியன் டாலர் : ] பிரான்சுக்கு வருமானம் வருகிறது.
  3. கடந்த 50 ஆண்டுகளாக பிரான்ஸ் அணுவியல் துறை நுணுக்க சாதனங்கள் விருத்தி செய்வதில் வெற்றி பெற்றுள்ளது.  குறிப்பாக அணுவியல் எரிக்கரு உற்பத்தி ஏற்றுமதியில் செல்வாக்கு அடைந்துள்ளது.
  4. அத்துடன் சுமார் 17% பங்கு மின்சக்தி அணுவியல் எரிக்கரு மீள் சுழற்சியில் [Recycled Nuclear Fuel] கிடைக்கிறது.

+++++++++++++

Related image

French nuclear power reactors

பிரான்ஸ் எரிசக்தி உற்பத்தி மூல எருக்கள் [Energy Sources] 

2016 ஆண்டில் பிரான்சின் மின்சக்தி ஆற்றல் உற்பத்தி 556 TWh [ terra watt hours [Gross].

  1. அதில் அணுமின்சக்தியின் பங்கு : 72% [403 TWh].
  2. நீரழுத்த மின்னாற்றல் : 12%  [65 TWh],
  3. இயல்வாயு + நிலக்கரி வெப்ப மின்சக்தி 8% [45 TWh];
  4. சூரியக்கதிர் + காற்றாற்றல் :  5% [ 31 TWh ]
  5. அதாவது பிரான்ஸ் மொத்தத் தேவை மின்சக்தி : 442 TWh [6,600 KWh/cappit] : கி.வாட் ஹவர் / காப்பிட்டா.
  6. 2013 இல் வீட்டு மின்சார விலை அளவு : 8 சென்ட்/கிலோவாட் ஹவர்.  [cents/Kwh]

French nuclear power reactors

Class Reactor MWe net, each Commercial operation
900 MWe Blayais 1-4
910
12/81, 2/83, 11/83, 10/83
Bugey 2-3
910
3/79, 3/79
Bugey 4-5
880
7/79-1/80
Chinon B 1-4
905
2/84, 8/84, 3/87, 4/88
Cruas 1-4
915
4/84, 4/85, 9/84, 2/85
Dampierre 1-4
890
9/80, 2/81, 5/81, 11/81
Fessenheim 1-2
880
12/77, 3/78
Gravelines B 1-4
910
11/80, 12/80, 6/81, 10/81
Gravelines C 5-6
910
1/85, 10/85
Saint-Laurent B 1-2
915
8/83, 8/83
Tricastin 1-4
915
12/80, 12/80, 5/81, 11/81
1300 MWe Belleville 1 & 2
1310
6/88, 1/89
Cattenom 1-4
1300
4/87, 2/88, 2/91, 1/92
Flamanville 1-2
1330
12/86, 3/87
Golfech 1-2
1310
2/91, 3/94
Nogent s/Seine 1-2
1310
2/88, 5/89
Paluel 1-4
1330
12/85, 12/85, 2/86, 6/86
Penly 1-2
1330
12/90, 11/92
Saint-Alban 1-2
1335
5/86, 3/87
N4 – 1450 MWe Chooz B 1-2
1500
12/96, 1999
Civaux 1-2

1495

1999, 2000
Total (58)
63,130

Differences in net power among almost identical reactors is usually due to differences in cold sources for cooling

“இந்த எதிர்பாராத துன்பமய நிகழ்ச்சி ஜப்பானில் எதிர்கால அணுமின்சக்தித் திட்டங்களைத் தவிர்க்கப் போவதில்லை.  புதிய அணுமின் சக்தி உற்பத்தித் திட்டங்கள் செம்மைப் படுத்தப் பட்டாலும் பெருமளவில் மாற்றம் அடையப் போவதில்லை.  இப்போதும் அணுமின்சக்தி ஆதரிப்பாளர் எண்ணிக்கை எதிர்ப்பாளர் எண்ணிக்கையை விட இரண்டரை மடங்கு (42% Versus 16%) மிகையாகவே உள்ளது.”

பேராசிரியர் அதனாஸ் தஸேவ் (Bulgarian Nuclear Forum, Energy Expert)     


“மனித இனத்துக்கு அணுமின்சக்தி மிகவும் தேவைப் படுகிறது என்பது என் தனிப்பட்ட கருத்து. அவை விருத்தி செய்யப்பட்டு மக்களுக்கு முழுமையான பாதுகாப்பு அளிப்பவை என்று உறுதிப்பாடாக வேண்டும்.  அதாவது அணு உலைகள் யாவும் பூமிக்கடியில் நிறுவப்பட வேண்டும் என்பது என் கருத்து.  அகில நாடுகளின் அணுசக்திப் பேரவை (IAEA) தாமதமின்றி அணு உலைகள் எல்லாம் அடித்தளங்களில் நிறுவப்பட சட்டமியற்ற வேண்டும்.”

ஆன்டிரே ஸெக்காரோவ் [Andrei Sakharov, Russian Nobel Laureate (May 1989)]

 

ரஷ்யாவில் எரிசக்தி ஆக்கமும், மின்சார உற்பத்தியும் அணுசக்திப் பொறித்துறைகள் இல்லாமல் தற்போது நிகழப் போவதில்லை.

ரஷ்ய ஜனாதிபதி டிமிட்ரி மெட்வெதேவ் & பிரதம மந்திரி விலாடிமிர் புட்டின் கூட்டறிக்கை.

நவீன ரஷ்ய அணுமின் உலைகளைக் கட்டுவ தென்றால் தற்போதைய பாதுகாப்பு நெறிப்பாடு விதிகள் மிகக் கடுமையாக எழுதப்பட்டுள்ளன.  அணு உலை எரிகோல்களின் அபாய வெப்பத்தைத் தணித்துப் பாதுகாக்கப் பல்வேறு நீரனுப்பு முறைகளை நாங்கள் அமைத்தி ருக்கிறோம்.  எங்கள் நவீன AES-2006 மாடல் அணுமின் நிலையத்தில் இயக்க முறைப்பாடு, ஓய்வு முறைப்பாடு (Active & Passive Emergency Coolant Systems) என்னும் இரட்டை நீரனுப்பு ஏற்பாடுகள் எரிக்கோல்களின் அபாய வெப்பத்தை உடனே தணிக்க அணு உலையின் கோட்டைக்குள்ளேயே இரட்டைக் குழாய்ப் பைப்போடு இணைக்கப் பட்டுள்ளன.  அத்தோடு வெப்பக் கோல்கள் உருகி விட்டால் தாங்கிக் கொள்ளும் கும்பாவும் (Fuel Rods Melt Trap) கீழே அமைக்கப்பட்டு உள்ளது.  மேலும் ஓய்வு வாயு வெப்பத் தணிப்பி, நீண்ட கால அணுப்பிளவுக் கதிரியக்கச் சுத்தீகரிப்பு ஏற்பாடு, ஹைடிரஜன் மீள் இணைப்பிகள் போன்றவையும் அமைக்கப் பட்டுள்ளன.  செர்நோபில் விபத்துக்குப் பிறகு கடின முறையில் நாங்கள் கற்றுக் கொண்ட பாடங்கள் இவை யெல்லாம்.

லியோனிட் போல்ஸோவ் (Director, Institute of Safe Development of Nuclear Power Industry)

“விஞ்ஞானப் பொறியியல் நிபுணத்துவத்தில் முற்போக்கான ஜப்பானியர் எப்படி நான்கு அணுமின் உலைகளின் வெப்பத்தைக் கட்டுப்படுத்த முடியாமல் தடுமாறிப் போனார் என்று ரஷ்ய அணுசக்தித் துறையினர் குழம்பிப் போயுள்ளார்.  முடியாமைக்குக் காரணம் நிலநடுக்கம், சுனாமி ஆகிய இரு நிகழ்ச்சிகளின் கூட்டு விளைவு என்பது என் கருத்து.  எந்த அணுமின் சக்தித் திட்டமும் இந்த அசுர அளவு பூகம்பத்துக்கும் (ரிக்டர் : 9) 30 அடி உயரச் சுனாமி எதிர்பார்ப் புக்கும் டிசைன் செய்யப் படவில்லை.

விலாடிமிர் குபரேவ் (Vladimir Gubarev, Chernobyl Burial Drama Author)

உலக நாடுகளுக்கு 21 ஆம் நூற்றாண்டில் அணுமின் நிலையங்கள் ஒரு தேவையான தீங்கு எரிசக்திக் கூடம்.  ஐயமின்றிப் பேரளவு மின்சாரத்தைச் சிறிய இடத்தில் உற்பத்தி செய்ய அணுசக்திக்குப் போட்டியான, நிகரான ஓர் எரிசக்தி தற்போதில்லை.  ஒரு மோட்டார் காரை உற்பத்தி செய்ய சுமார் 10,000 யந்திரச் சாதனங்கள், உபகரணங்கள் தேவைப்படுகின்றன.  அதுபோல் ஓர் அணுமின் நிலையத்தை அமைத்து இயக்க மில்லியன் கணக்கில் யந்திரச் சாதனங்கள், உபகரணங்கள் அவசியம் தயாரிக்கப்பட வேண்டும்.  மின்சாரத்தைப் பரிமாறுவதோடு இந்த யந்திர யுகத்தில் பாதுகாப்பாய் இயங்கி வரும் பல்வேறு அணுமின் நிலையங்களால் மில்லியன் கணக்கில் பலருக்கு வேலையும், ஊதியமும், நல்வாழ்வும் கிடைத்து வருகின்றன.

கட்டுரை ஆசிரியர்

முன்னுரை:  2011 மார்ச்சு மாதம் 11 ஆம் தேதி ஜப்பான் கிழக்குப் பகுதியைத் தாக்கிய 9 ரிக்டர் அளவு அசுர நிலநடுக்கத்தில் கடல் நடுவே 50 அடி (14 மீடர்) உயரச் சுனாமி எழுந்து நாடு, நகரம், வீடுகள், தொழிற்துறைகள் தகர்ந்து போயின.  சுமார் 10,000 பேர் உயிரிழந்தனர்.  மேலும் 17,000 பேர் இன்னும் காணப்பட வில்லை.  சுமார் 80,000 பேர் புலப்பெயர்ச்சி செய்யப் பட்டுள்ளார். புகுஷிமாவின் நான்கு அணுமின் உலைகளின் எரிக்கோல்கள் வெப்பத் தணிப்பு நீரின்றி, ஓரளவு சிதைந்து, ஹைடிரஜன் வாயு சேமிப்பாகி வெளியேறி மேற்தளக் கட்டங்கள் வெடித்தன.  அத்துடன் ஒன்று அல்லது இரண்டு அணு உலைக் கோட்டை அரணில் பிளவு ஏற்பட்டுக் கதிரியக்கப் பிளவுத் துணுக்குகள் (Radioactive Fission Products) சூழ்வெளியிலும், கடல் நீரிலும் கலந்தன.  அந்தப் பேரிழப்பால் பல்லாயிரம் பேர் உயிரிழந்தும் பிழைத்துக் கொண்டோர் வீடிழந்தும், தமது உடமை இழந்தும், சிலர் கதிரியக்கத்தாலும் தாக்கப்பட்டார்.  நான்கு  அணுமின் உலைகளில் பெருஞ் சேதம் ஏற்பட்டதால் ஜப்பான் நாட்டில் 2720 மெகா வாட் மின்சக்தி (MWe) உற்பத்தி குன்றி அண்டை நகரங்களில் பேரளவு மின்வெட்டுப் பாதிப்புகள் நேர்ந்துள்ளன.

தற்போது முப்பது உலக நாடுகளில் 440 அணுமின் நிலையங்கள் [அமெரிக்காவில் திரி மைல் தீவு, ரஷ்யாவில் செர்நோபில் நிலையம், ஜப்பானில் புகுஷிமாவின் நான்கு அணுமின் உலைகள் ஆகியவற்றைத் தவிர] பாதுகாப்பாக இயங்கி சுமார் 370,000 MWe (16%) ஆற்றலைப் பரிமாறி வருகின்றன.  மேலும் 56 நாடுகளில் 284 அணு ஆராய்ச்சி உலைகள் அமைப்பாகி ஆய்வுகள் நடத்தப் பட்டு வருகின்றன.  அணு மின்சக்தி நிலையங்கள் 1950 ஆண்டு முதல் தோன்றி மின்சாரம் அனுப்பத் துவங்கிய பிறகு தொடர்ந்த 60 ஆண்டுகளில் ஆறு பெரிய கதிரியக்க விபத்துகள் நிகழ்ந்துள்ளன.  2011 ஆண்டு மார்ச்சு வரை உலக அணு உலைகளில் சராசரி 10 ஆண்டுக்கு ஒருமுறை ஒரு பெரு விபத்து நேர்ந்திருக்கிறது !  ஜப்பான் புகிஷிமா அணு உலைகள் விபத்துக்குப் பிறகு எதிர்கால அணுமின்சக்திக்கு உலக நாடுகள் இன்னும் ஆதரவு அளிக்கின்றனவா அல்லது எதிர்ப்பு அறிவிக்கின்றனவா என்பதை விளக்கமாய் ஆராய்வதே இந்தக் கட்டுரையின் குறிக்கோள்.

புகுஷிமா அணுமின் உலைகளின் தற்போதைய நிலை (ஜூன் 20, 2011)

புகுஷிமா : 1  அணு உலை சுயமாய் நிறுத்தமாகி அபாய வெப்பத் தணிப்பு நீரற்றுப் போனதால் ஓரளவு எரிக்கோல்கள் உருகிப் போயின.  அணு உலையில் ஹைடிரஜன் வாயுக் கசிவால் மேற் கட்டடம் வெடித்தது.  கதிரியக்கக் கழிவு நீர் சேமிப்பு அணு உலையிலும், டர்பைன் அடித்தள அறையிலும் காணப் பட்டது.

புகுஷிமா : 2  அணு உலை சுயமாய் நிறுத்தமாகி அபாய வெப்பத் தணிப்பு நீரற்றுப் போனதால் ஓரளவு எரிக்கோல்கள் உருகிப் போயின.  அணு உலையில் ஹைடிரஜன் வாயுக் கசிவால் மேற் கட்டடம் வெடித்தது.  கதிரியக்கக் கழிவு நீர் சேமிப்பு அணு உலையிலும், டர்பைன் அடித்தள அறையிலும் காணப் பட்டது.  அரணில் பிளவு ஏற்பட்டுக் கதிரியக்கம் பரவி விட்டதாக ஐயப்பாடு.

புகுஷிமா : 3  அணு உலை சுயமாய் நிறுத்தமாகி அபாய வெப்பத் தணிப்பு நீரற்றுப் போனதால் ஓரளவு எரிக்கோல்கள் உருகிப் போயின.  அணு உலையில் ஹைடிரஜன் வாயுக் கசிவால் மேற் கட்டடம் வெடித்தது.  அரணில் பிளவு ஏற்பட்டு உள்ளதாக ஐயப்பாடு.  கதிரியக்கக் கழிவு நீர் சேமிப்பு அணு உலையிலும், இணைக்கப் பட்ட குகையிலும் காணப் பட்டது.  தீய்ந்த எரிகோல்கள் சேமிக்கப்பட்ட தடாகத்தில் (Spent Fuel Storage Pool) நீர் மட்டம் குறைந்து பிறகு நீர் நிரப்பப் பட்டது.

புகுஷிமா : 4  தீய்ந்த எரிகோல்கள் சேமிக்கப்பட்ட தடாகத்தில் நீர் மட்டம் குறைந்ததால்,
தீயும் வெடிப்பும் நேர்ந்தன.

புகுஷிமா : 5 & 6  அணு உலைகள் சுயமாய் நிறுத்தமாகின.  தீய்ந்த எரிகோல்கள் சேமிக்கப்பட்ட தடாகத்தில் நீர் மட்டம் குறைந்து எரிக்கோல்களின் உஷ்ணம் ஏறியது.

மொத்தக் கதிரியக்கக் கழிவு நீர் சேமிப்பு 110,000 டன் என்று கணிக்கப் படுகிறது.  அது மீள் சுற்றியக்க வடிகட்டு முறையில் நீண்ட காலம் சுத்திகரிக்கப் பட வேண்டும்.

அணுமின் உலைகள் எதிர்காலம் பற்றி அகில நாடுகளின் தீர்மானங்கள்

புகுஷிமா அணுமின் உலைகளில் நேர்ந்த வெடிப்பு நிகழ்ச்சிகளை நேரடியாகக் கண்டு பயந்து போன ஆயிரம் ஆயிரம் பொது மக்களின் வெறுப்பும், எதிர்ப்பும் வேறு.  அணுசக்தி உற்பத்தி மீது அகில நாட்டு அரசுகளின் ஆதரவும், முடிவும் வேறு !  பொது மக்கள் பல்லாண்டுகள் ஒரு மனதாய் அவற்றை எதிர்த்தாலும் இப்போது உலக நாடுகளில் இயங்கிக் கொண்டிருக்கும் 440 அணுமின் நிலையங்கள் உடனே நிறுத்தம் அடையப் போவ தில்லை.  இப்போது (ஜூன் 14, 2011) கட்டப்பட்டு வரும் அணுமின் உலைகளின் எண்ணிக்கை : 60.  அடுத்துத் திட்டமிடப் பட்டவை : 155.  எதிர்கால எதிர்ப்பார்ப்பு அணுமின் உலைகள் : 338.  புகிஷிமா அணு உலை விபத்தில் கற்றுக் கொள்ளும் முதற்பாடம் : 1960 ஆண்டுகளில் டிசைன் செய்யப் பட்ட முதல் வகுப்புப் பிற்போக்கு அணுமின் உலைகள் விரைவில் நிச்சயம் மூடப்படும் நிரந்தரமாய்.  முப்பது வருடமாய் இயங்கி வரும் அணுமின் உலைகள் சில மீளாய்வு செய்யப் பட்டுப் பழைய சாதனங்கள் புதுப்பிக்கப் பட்டு ஆயுட் காலம் இன்னும் 5 அல்லது 10 ஆண்டுகள் நீடிக்கப் படலாம் அல்லது அதற்கு நிதியின்றேல் நிரந்தரமாய் நிறுத்தம் அடையலாம்.

இயங்கி வரும் 440 அணுமின் உலைகளில் அபாய வெப்பத் தணிப்பு நீரனுப்பி ஏற்பாடுகள் ஒன்றுக்கு மேல் இரட்டிக்கப் படும் அல்லது மூன்றாக்கப் படும்  இரட்டை அல்லது மூவகை அபாய டீசல் எஞ்சின் மின்சாரப் பம்ப்பு இணைப்பு அமைப்போடு, ஈர்ப்பு விசையாலோ, அழுத்த வாயுவாலோ இயங்கும் ஓய்வுத் தணிப்பு ஏற்பாடுகள் (Passive Gravity or Compressed Air Coolant Injection Systems) சேர்க்கப் படும்.  அல்லது இரண்டுக்கு மேல் பெருக்கம் அடையும்.  சேமிப் பாகும் ஹைடிரஜன் வாயுவுக்கு அணு உலை உள்ளே மீள் இணைப்பிகள் சேர்க்கப் படும்.  அபாய வெப்பத் தணிப்பு நீரோட்ட இறுதியில் பேரளவு சேரும் கதிரியக்கக் கழிவு நீர் சேமிப்புத் தடாகமும், சுத்தீகரிப்பு ஏற்பாடும் (Contaminated Waste Water Treatment Facility) இணைக்கப் படும்.  தற்போது கட்டப்பட்டு வரும் அணுமின் உலைகள் தடைப் படாமல் தொடர்ந்து நிறுவப் படும்.  திட்டமிட்ட எதிர்கால அணுமின் உலைகள் மீளாய்வு செய்யப்பட்டுக் கட்டப் படலாம்.  அல்லது புறக்கணிக்கப் படலாம்.

அணுமின் நிலைய ஐக்கிய நாட்டுக் கண்காணிப்புக் கழுகுகள் வற்புறுத்தும் புதிய பாதுகாப்பு விதிகள்

21 நாடுகள் இணைந்த ஈரோப்பியன் அணுசக்திப் பாதுகாப்பு ஆணையகம் (European Nuclear Safety Regulatory Group -ENSRG) தனது அழுத்தமான உளவு விதியை வெளியிட்டுள்ளது.  அதன் விதிப்படி நிலநடுக்கம், வெள்ளம், பேரலை அடிப்பு, மூர்க்கர் தாக்குதல், விமான வீழ்ச்சிபோன்ற பயங்கர விளைவுகளைத் தூண்டும் அபாயச் சம்பவங்களையும், பாதிக்கபட்ட பொது மக்களின் புலப் பெயர்ச்சியையும் எப்படிக் கையாளுவது என்பது ஆழ்ந்து தீவிரமாய் ஆராயப்படும்.  புகுஷிமா அணுமின் உலை விபத்துகளை முன்வைத்து 2011 மே 31 ஆம் தேதி வரை உலக நாடுகள் அணுசக்தி நிலையங்கள் இயக்கத்தைப் பற்றிச் செய்துள்ள முடிவுகளைக் கீழே காணலாம் :

புகுஷிமா அணுமின் உலை விபத்துச் சிக்கல்கள் போல் மீண்டும் நேராதிருக்க ஐக்கிய நாட்டுக் கண்காணிப்புக் கழுகுத் தலைவர், யுகியா அமானோ (Yukiya Amano, Head of UN Watchdog) அகில உலக அணுமின் நிலையங்களின் பாதுகாப்பு அமைப்புகளை ஆழ்ந்து உளவி 18 மாதங்களுக்குள் முடிவுகளைத் தெரிவிக்க வேண்டும் என்று அறிவித்திருக்கிறார்.  இந்த அறிவிப்பை முன்னிட்டு 150 உலக நாடுகள் வியன்னா அகில் நாட்டு அணுசக்திப் பேரவை (IAEA) நிறுவகத் தளத்தில் கூடப் போகின்றன. மேலும் அவர் கூறியது: புகுஷிமா அணுமின் உலைகளின் விபத்துகள் பொது மக்களைப் பேரளவில் பயமுறுத்தி உள்ளதால், அவருக்கு நேர்மையாய்ப் பதிலளிக்க வேண்டிய கடமையும் IAEA வுக்கு நேர்ந்திருக்கிறது.  அணுமின் நிலையங்களின் அபாயப் பாதுகாப்பு முறைகள் மீது பொது நபருக்கு நம்பிக்கை போய்விட்டது.  ஆதலால் IAEA அணுமின் நிலைய இயக்க அதிகாரிகளுக்குக் கடுகையான கண்காணிப்பு விதிகளை விடுத்து அவற்றை எல்லா அணுமின் நிலையங்களிலும் கடைப்பிடிக்க வேண்டும் என்றும் வற்புறுத்தியுள்ளது.

சென்ற வாரத்தில் எதிர்கல அணுமின் சக்தி உற்பத்தி பற்றிய 10 உலக நாடுகளின் முடிவுகள் :   (1. அர்ஜென்டைனா, 2. பிரேசில், 3. ஆர்மீனியா 4. கனடா, 5. சைனா, 6 பின்லாந்து, 7. பிரான்ஸ், 8. ஜெர்மனி, 9. இந்தியா, 10 ஜப்பான்) தெரிவிக்கப்பட்டன.  இக்கட்டுரையில் மற்ற 11 உலக நாடுகளின் முடிவுகள் கூறப்படுகின்றன.

(முன் வாரத் தொடர்ச்சி)

11. மெக்ஸிகோ :  துணை எரிசக்தி அமைச்சர் கார்லோஸ் பீடர்சன் புகுஷிமா அணு உலை விபத்துகள் மெக்ஸிகோ திட்டமிட்டிருக்கும் அணுமின் நிலைய நிறுவ ஆலோசனைகளை நிறுத்த வில்லை என்று அறிவித்துள்ளார்.

12. நெதர்லாந்து :  டச் அரசாங்கம் திட்டமிட்டுள்ள புதிய அணுமின் நிலைய ஏற்பாடுகளை தொடர்ந்து மேற்கொள்ளப் போகிறது.

13. ருமேனியா :  அணுமின் உலைகள் ஆதரவு பற்றி அரசாங்கக் கொள்கையில் மாறுதல் எதுவும் இல்லை.

14.  ரஷ்யா :  ரஷ்ய ஜனாதிபதி டிமிட்ரி மெட்வடிவ் அகில நாடுகளில் சுனாமிப் பேரலைத் தாக்க எதிர்பார்ப்பு உள்ள அணுமின் நிலையங்களின் நீண்ட காலப் பாதுகாப்பு நிலை விதிகளின் தேவையை வற்புறுத்தினார்.  நிலநடுக்கப் பழுதுக் கோடுகளுக்கு (Seismic Fault Line) அப்பால் அமைக்கப் பட்டுள்ள ரஷ்ய அணுமின் நிலையங்களில் உடனடிக் கவனம் செலுத்தும்
அவசியம் இல்லை என்றும் வலியுறுத்தினார்.

15. தென் ஆப்ரிக்கா :  தென் ஆப்ரிக்காவின் அணுசக்திக் கட்டுப்பாடு ஆணையகம் கடற்கரையில் அமைந்துள்ள கோபெர்க் அணுமின் நிலையம் நீண்ட கால அபாய வெப்பத் தணிப்பு நீர் வசதி ஏற்பாடுகளை உடையது என்று அறிவித்தது.  ஒன்றே ஒன்றான இந்த இரட்டை அணுமின் நிலையம் 1800 MWe மின்சார உற்பத்தி செய்யும் ஆற்றல் உள்ளது.  2011 மார்ச் 16 ஆம் தேதி தென் ஆப்ரிக்க அரசு 2030 ஆண்டுக்குள் 13% தகுதி மின்சாரப் பங்கு ஏற்றுக் கொள்ள 9600 MWe ஆற்றல் உள்ள அணுமின் நிலைய திட்டங்களைக் கட்ட அனுமதி அளித்திருக்கிறது.

16 தென் கொரியா :  2011 மார்ச் 21 ஆம் தேதி தென் கொரியா கல்வி அமைச்சகம் தற்போது இயங்கி வரும் அணுமின் நிலையப் பாதுகாப்பு இயக்கங்களை மீளாய்வு செய்ய ஆணை இட்டது.  இப்போது 21 அணுமின் நிலையங்கள் 40% பங்கு மின்சாரம் அனுப்பி வருகின்றன. 2020 ஆண்டுக்குள் இன்னும் 35 புதிய அணுமின் நிலையங்களைத் தென் கொரியா நிறுவத் திட்ட மிட்டுள்ளது.

17 சுவீடன் :  2009 ஆம் ஆண்டு செய்த முடிவின்படி தற்போதுள்ள அணுமின் நிலையங்கள் ஆயுட் கால இறுதியில் முற்றிலும் புதுப்பிக்கப் பட்டு மாற்றப் படும்.  2011 ஆண்டு இறுதிக்குள் ஈரோப்பியன் அணுசக்திப் பேரவைக்கு உலோக அழுத்தச் சோதனை விளைவுகளை (Stress Tests) அனுப்ப வேண்டும்.

18. சுவிட்ஜர்லாந்து :  2011 மே மாத இறுதியில் சுவிஸ் அரசாங்கம் ஆயுள் முடியும் அணுமின் நிலையங்கள் மூடப்படும் என்று முடிவு செய்தது.  அதாவது 2034 ஆண்டுக்குள் அனைத்து அணுமின் நிலையங்களும் நிறுத்தம் அடையும் என்றும் அறிவித்தது.

19. டெய்வான் :  டெய்வான் ஜனாதிபதி தற்போது இயங்கி வரும் அணுமின் நிலையங்களின் பாதுகாப்பு மீளாய்வு செய்யப்படும் என்று அறிவித்தார்.  அத்துடன் புதிதாய்க் கட்டத் திட்டமிட்ட அணுமின் நிலையங்கள் தாமதப் படாமல் அமைக்கப் படும் என்றும் கூறினார்.

20. பிரிட்டன் :  பிரிட்டிஷ் அரசாங்கம் புதிய முறைப்பாடு அணுமின் நிலையங்களை 2025 ஆண்டுக்குள் கட்டப் போகும் திட்டத்தை இன்று அறிவித்துள்ளது.  அவை தேர்ந்தெடுக்கப் படும் எட்டுத் தளங்களில் நிறுவப்படும்.  அதை அறிவித்த பிரிட்டிஷ் அமைச்சர் : எரிசக்தி மந்திரி சார்லஸ் ஹென்றி.  எதிர்கால அணுமின் நிலையத் திட்டங்களுதுக்கு நிதி ஒதுக்கு 160 பில்லியன் டாலர்.

21 அமெரிக்கா :  2011 மே மாதம் 17 ம் தேதி அமெரிக்க அணுசக்தி நெறிப்பாடு ஆணையகம் (US Nuclear Regulatory Commission – NRC) இன்னும் ஆறு மாதங்களுக்குள் அமெரிக்க அணுமின் உலைகளின் அபாயப் பாதுகாப்பு இயக்க முறைகளை மீளாய்வு செய்து தமக்குச் சமர்ப்பிக்க வேண்டும் என்று நியமிக்கப் பட்ட ஆய்வு வினைக் குழுவுக்கு (A Task Force) அறிவித்தது.  ஜப்பான் அணு உலை வெடிப்புகள், அவற்றின் நேரடித் தொலைக்காட்சித் தரிசனம், ஜப்பானி யரின் நீண்ட காலத் தவிப்பு, அணு உலை இயக்க நிபுணரின் கட்டுப்படுத்த முடியாத தடுமாற்றம் அமெரிக்கர் உட்பட உலக மக்களின் வயிற்றைப் பெரிதாகக் கலக்கி இருக்கிறது.  1979 இல் திரிமைல் தீவு அணுமின் உலை விபத்துக்குப் பிறகு அமெரிக்காவில் நிறுத்தமான புதிய அணுமின் நிலையத் திட்டங்கள் எல்லாம் மீண்டும் உயிர்தெழும் என்ற நம்பிக்கை மிகவும் தளர்ந்து போயுள்ளது.  அத்தகைய வெறுப்பும், அவநம்பிக்கையும் இருந்தாலும் அமெரிக்கா வில் (2011) தற்போது அணுமின் உலைகள் அவசியத் தேவை என்பதற்கு 43% மக்கள் ஆதரவு அளிக்கிறார்.  இப்போது அமெரிக்காவில் 104 அணுமின் நிலையங்கள் பாதுகாப்பாய் இயங்கி வருகின்றன.  1977 இல் அணுமின் உலை ஆதரவாளர் 77%.  திரிமைல் தீவு, செர்நோபில் விபத்துக்களுக்குப் பிறகு ஆதரவு 59% ஆகக் குறைந்தது.  ஜப்பான் புகுஷிமா விபத்துக்குப் பிறகு அமெரிக்காவில் 2011 இல் அணுமின் நிலைய ஆதரவு 43% ஆகக் குன்றி விட்டது !

முடிவுரை:   பெரும்பான்மையான உலக நாடுகள் 21 ஆம் நூற்றாண்டில் அணுமின் நிலையங்களைத் தேவையான தீங்கு (Necessary Evil) என்று கருதுகின்றன.  ஐயமின்றிப் பேரளவு மின்சாரத்தைச் சிறிய இடத்தில் உற்பத்தி செய்ய அணுசக்திக்குப் போட்டியான, நிகரான எரிசக்தி தற்போது இருப்ப தாகத் தெரியவில்லை.  மோட்டார் வாகனம் ஒன்றை உற்பத்தி செய்ய சுமார் 10,000 யந்திரச் சாதனங்கள், உபகரணங்கள் தேவைப்படுகின்றன.  அதுபோல் ஓர் அணுமின் நிலையத்தை அமைத்து இயக்க மில்லியன் கணக்கில் யந்திரச் சாதனங்கள், உபகரணங்கள் அவசியம் தயாரிக்கப்பட வேண்டும்.  மின்சாரத்தைப் பரிமாறுவதோடு இந்த யந்திர யுகத்தில் பாதுகாப்பாய் உலகில் இயங்கி வரும் பல்வேறு அணுமின் நிலையங்களால் மில்லியன் கணக்கில் பலருக்கு வேலையும், ஊதியமும், நல்வாழ்வும் கிடைத்து வருவதில் சிறிதேனும் ஐயமில்லை.

(தொடரும்)

***************

தகவல்:

1.  Backgrounder on Earthquakes & Nuclear Power in Japan   (March 11, 2011)

2. Japan Nuclear Industry is in Meltdown [Sep 28, 2002]

3. Monju Fast Breeder Startup (Feb 10, 2010)

4.  Nuclear {Power in Japan (March 30, 2011)

5. Russia & India Report –  Lessons of Fukushima – Expert Opinions.  (March 28, 2011)

6 Macleans Magazine – Japan Fearing the Fallout  (March 28, 2011)

7. Monju Fast Breeder Restarts after 14 years of Suspension  (May 12, 2010)

8.  Fukushima & Chernobyl Compared (April 11, 2011)

9.  World Nuclear Association Report – Nuclear Power in Japan & Nuclear Safety and Seurity in the wake of Fukushima Accident (Updated in April 2011)

10. Fukushima : What Happened and What Needs to be done ? (April 10, 2011)

11. Japan Fukushima Damaged Nuclear Reactors’ Status (April 13, 2011)

12. Setbacks at Japan (Fukushima) Nuclear Plants (May 12, 2011)

13. World Nuclear Association Report : Fukushima Accident 2011 (May 30, 2011)

14. World Nuclear Association Report : Policy Responses to the Fukushima Accident. (May 31, 2011)

15 Wikipedea Report : http://en.wikipedia.org/wiki/Paks_Nuclear_Power_Plant(Hungarian Paks Atomic Plant Loss of Coolant Accident) (May 27, 2011)

16. Wikipedea Report :  List of Civilian Nuclear Accidents (June 4, 2011)

17. BBC News – Japan Nuclear Crisis : Fukushima Cold Shutdown for January 2012 (May 17, 2011)

18. BBC News : Europe, French Nuclear Policy  (May 31, 2011)

19 BBC News – Fukushima Lessons may take 10 years to Learn By : Richard Black (June 8, 2011)

20. Environment News Service – Analysis: Japan Underestimated Fukushima Radiation Releases By Half – Author Charles Diggs (June 8, 2011)

21. IAEA Briefing on Fukushima Nuclear Accident (June 2, 2011)

22 Wikipedea http://en.wikipedia.org/wiki/List_of_nuclear_reactors (List of World Nuclear Reactors) (June 8, 2011)

23 http://www.world-nuclear.org/info/reactors.html (World Nuclear Opeations) (June 14, 2011)

24. Nuclear Watchdog wants new safety checks after Fukushima (June 20, 2011)

25. BBC News : New UK Nuclear Plant Sites Named  (June 23, 2011)

26. https://www.japantimes.co.jp/news/2018/03/09/national/fukushima-no-1-cleanup-continues-radioactive-water-rumors-also-prove-toxic/#.XI0k

27.  https://www.theguardian.com/environment/2018/jun/03/was-fallout-from-fukushima-exaggerated

28. https://www.iaea.org/newscenter/focus/fukushima/status-update  [March 14, 2019]

29. https://www.fairewinds.org/fukushima-latest-updates  [January 18, 2019]

30. http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/france.aspx  [November 2018]

31http://www.nuclearpowerdaily.com/reports/Glowing_results_for_nuclear_power_at_Frances_EDF_999.html  [February 15, 2019] 

32. https://en.wikipedia.org/wiki/Nuclear_power_in_France  [March  10, 2019]

************************
S. Jayabarathan  (jayabarathans@gmail.com)  March 16, 2019  [R-1]
http:jayabarathan.wordpress.com/

அணுப்பிணைவு முறை மின்சக்தி நிலையத்தின் அமைப்பில் எதிர்ப்படும் பொறியியல் இடர்ப்பாடுகள்

Featured

 

fusion-reaction

சி. ஜெயபாரதன் B.E.(Hons) P.Eng (Nuclear) கனடா

பிண்டமும் சக்தியும் ஒன்றெனக்
கண்டார் ஐன்ஸ்டைன்
சமன்பாட்டு மூலம் !
அணுப்பிளவு யுகம் மாறி
அணுப்பிணைவு யுகம் உதயமாகும் !
கதிரியக்க மின்றி
மின்சார விளக்கேற்றும்  !
இயல்பாய்த்
தேய்ந்து மெலியும் ரேடியம்
ஈயமாய் மாறும் !
யுரேனியம் சுயப் பிளவில்
ஈராகப் பிரிந்து
பிளவு சக்தி உண்டாகும் !
பேரளவு உஷ்ணத்தில்
சூரியனில் நேரும் பிணைவு போல்
போரான் – நீரக வாயு  
எரிக்கரு  அழுத்தப் பட்டு
பேரளவு வெப்ப சக்தி  
சீராக  உண்டாக் கப்படும். 
கதிரியக்க மின்றி
மின்காந்த அரணுக்குள் !

++++++++++++++++

https://www.sciencedaily.com/releases/2018/10/181009175515.htm

அணுப்பிணைவு சக்தி உற்பத்தியில் நேரும் இடர்ப்பாடுகள்

வணிகத்துறை அணுப்பிணைவு மின்சக்தி நிலையங்கள் கடந்த 60 ஆண்டுகளாக வர முடியாமல் பல சிக்கல்கள், பிரச்சனைகள் நேர்ந்து வருகின்றன.  2016 மே மாதம் 20 தேதியில் ஒர் எரிசக்தி ரிப்போர்ட்டர்  நியூஜெர்ஸி பிரின்ஸ்டன் பிளாஸ்மா பௌதிக ஆய்வுக்கூடம் சென்று, சமீபத்தில் மேம்படுத்தப் பட்ட தேசீய வளையக் கோள் சோதனை கூடத்தைக்  [ National Spherical Torus Experiment (NSTX-U) ] காணச் சென்றார்,  அது உலகிலேயே மிகையான ஆற்றல் கொண்ட உருண்டை டோகாமாக் [Spherical Tokamak].  அறுத்த ஆப்பிள் போல் தெரியும் அது,  85 டன் பளுகொண்ட அசுர யந்திரம்.  அந்த டோகாமாக் உயர்சக்தி துகள்களைப் பயன் படுத்தி, ஹைடிரஜன் அணுக்களை 100 மில்லியன் டிகிரி செல்சியஸ் உஷ்ணத்தை உண்டாக்குகிறது.  அந்த உஷ்ணம் நமது சூரியனின் உட்கரு உஷ்ணத்தை விட மிகச் சூடானது.  அந்த பேரளவு உஷ்ண பிளாஸ்மாவை[ஒளிப்பிழம்பு] காந்த அரணுக்குள் அடைக்கச் சுற்றிலும் தாமிர வடங்கள் [Cooper Coils], பூமியைப் போல் 20,000 மடங்கு வலுவான ஒரு பூத காந்த மண்டலத்தை உண்டாக்கும்.

Image result for Real problems with fusion power

மின்காந்த அரணுக்குள் சில நிமிடங்கள் நீடித்த அணுப்பிணைவு சக்தி

++++++++++++++++++++

ஒருசில நிமிடங்களில்  ஹைடிரஜன் அணுக்கள் முட்டி மோதிப் பிணைந்து வெப்ப சக்தியை  வெளியாக்கும்.  சொல்வதற்கு எளிதாய் உள்ளது.  பிரச்சனை என்ன வென்றால்,  அப்பிணைவு சக்தி முதலில் அதிக அழுத்தமுள்ள காந்த அரணுக்குள் அடைக்கப் பட வேண்டும். இயக்கத்தில் உண்டாகும் நியூட்ரான்கள் எல்லா திசைகளிலும் பாய்ந்து சுவர்களை தாக்கும். அணுப்பிணைவு சக்தி வெளியீடு நீடிக்கப்பட வேண்டும்.  சீராகத் தொடரவேண்டும்.

சூரியனில் உள்ள பிளாஸ்மா [ஒளிப்பிழம்பு] பேரளவு வாயு அழுத்தத்தில் நீடிக்கிறது; தொடர்கிறது.  அதுபோல் புவியில் நேர்ந்திட ஆற்றல் மிக்க காந்தங்களோ அல்லது லேசர் ஆற்றலோ தேவைப்படும்.   ஒரு சிற்றளவு பிளாஸ்மா சாதனத்தில் எங்கோ கசிந்தாலும் அணுப்பிணைவு இயக்கம் உடனே நிறுத்தம் அடையும்.  அணுப்பிணைவு இயக்கத்தைச் சைனா 2017 ஆண்டு துவக்கத்தில் தனது உயர்கடத்திப் பிணைவு அணு உலையில் [Superconducting Fusion Reactor] 50 மில்லியன் டிகிரி  செல்சியஸ் உஷ்ணத்தில், 102 வினாடிகள் நீடிக்க முடிந்தது.

முதன் முதலாக 2016 இலையுதிர் காலத்தில் ஜெர்மனி தனது வெண்டெல்ஸ்டைன் அணுப்பிணைவு உலையில் [Wendelstein X-7 Stellarator] உலக முதன்மை முத்திரையைத் தாண்டி 30 நிமிடங்கள் பிணைவு இயக்கம் நீடித்தது.  அணுப்பிணைவுச் சோதனையில்  இது ஒரு பெரிய வரலாற்று மைல் கல் ஆகும்.  விஞ்ஞானிகளின் குறிக்கோள் அணுப்பிணைவு இயக்கம் சூரியனில் நிகழ்வது போல் நிற்காமல் நீடிக்க வேண்டும் என்பதே.  இதுவரை அப்படி ஓர் ஏற்பாடும் செய்து காட்ட முடியவில்லை.

அடுத்த பெரும் இடர்ப்பாடு பல மில்லியன் டிகிரி செல்சியஸ் உஷ்ண பிளாஸ்மாவைத் தொடர்ந்து தாங்கும் அணு உலைக் கோளம்.  அதிவேக  ஆற்றல் கொண்ட நியூட்ரான்கள் அடிப்பில் நெளிந்து முறிந்து போகாத கவசங்கள் கிடைக்காதது. நியூஜெர்சி பிரின்ஸ்டன் அணு உலைக் கவசமாக தற்போதுள்ள கார்பன் கிராஃபைட்டை நீக்கி விட்டு, நீடித்த துருப்பிடிப்பு நேராது, திரவ லிதியம் பயன்படுத்தப் போகிறது.

இந்த இடர்ப்பாடுகள் நீக்கப்பட்டு எப்போது, வணிவ வடிவத்தில் நீடித்து இயங்கும் அணுப்பிணைவு மின்சக்தி நிலையங்கள் நிறுவகமாகப் போகின்றன என்ற கேள்வி எழுகிறது. 10 -15 ஆண்டுகள் ஆகலாம்; இல்லை 25 ஆண்டுகள் கூட எடுக்கலாம்.  ஐயமின்றி அவை நிச்சயம் வரப் போகின்றன.  பிரான்சில் ITER பல நாட்டுக் கூட்டுறவில் அணுப்பிணைவு நிலையம் 2005 ஆண்டு முதல் அடித்தளம் இட்டு 40 பில்லியன் டாலர் செலவில் 2030 இல் இயங்கத் திட்டமிடப் பட்டுள்ளது .

+++++++++++++++++

 

சூட்டுப் பிணைப்பு மூலம் போரான் – நீரக வாயு அணுக்கருப் பிணைப்பு இயக்கத்தில்  பேரளவு வெப்பசக்தி உற்பத்தி.

2017 டிசம்பர் 28 ஆம் தேதி ஜெர்மன் நாட்டு  மாக்ஸ் பிளாங்க் ஒளிப்பிழம்பு பௌதிக ஆய்வுக்கூடத்தின்   [Max Planck Institute for Plasma Physics]  ஆய்வுக்குழுவினர் முதன்முதலாய்ப் புதிய முறையில் அணுப்பிணைவு இயக்க மூலம் பேரளவு வெப்பசக்தி உண்டாக்கும் திட்டத்தை வெளியிட்டுள்ளார்.  கடந்த 60 ஆண்டு களாய் இதுவரை அணுப் பிணைவு [Nuclear Fusion] இயக்கத்துக்கு ஹைடிரஜன் வாயுவின் ஏகமூலங்கள் [Isotopes] எனப்படும் டிரிடியம் & டியுட்டீரியம் [Tritium & Deuterium Isotopes] கதிரியக்க மூலகங்கள் பயன்படுத்தப் பட்டு வருகின்றன.  இப்போது ஜெர்மன் அணுக்கரு பௌதிக  ஆராய்ச்சியாளர் போரான் & நீரக வாயுவை [Boron & Hydrogen] எரிக்கருவாக எளிய ஓர் கோள வடிவுச் சாதனத்தில் பயன்படுத்தி வெப்பசக்தி உண்டாக்க முடியும் என்று அறிவித்துள்ளார்கள்.  இப்போது கூட்டு முயற்சியில் பிரான்சிலும், மற்ற உலக நாடுகள் தனியாகவும் செய்துவரும் சோதனைகள் வெற்றி அடையும் முன்பே, போரான் – நீரக வாயு பிணைப்பியக்கம் மின்சக்தி உற்பத்தி செய்யும் என்று உறுதி யாக நம்பப்படுகிறது.  இந்தப் புதிய அணுப்பிணைவுத் திட்டத்தை 2017 டிசம்பர் 12 ஆம் தேதி ஹையன்ரிக் ஹோரா [Heinrich Hora] என்பவர் லேசர் & துகள் கற்றை வெளியீட்டில்  [Journal of Laser & Particle Beams]  அறிவித்துள்ளார்.

ஹையன்ரிக் ஹோரா சொல்கிறார் :  நீரக வாயு & போரான் -11 மூலகம் [Hydrogen -0] [One Proton and Boron -11 (Boron with 6 Neutrons)] இரண்டையும் திணிவு மிகுத்த நிலையில் [100,000 times More density than ITER Fuel], பேரளவு உஷ்ணமுடன் [5 பில்லியன் டிகிரி F (3  பில்லியன் டிகிரி C)], ஒரு கோள வடிவான அரணில் அழுத்திப் பிணைத்தால், மூன்று ஹீலியம் [Helium -4] உண்டாகும்.  அந்த இயக்கத்தில் எழும் ஒளிப்பிழம்பிலிருந்து [Plasma], நேராக மின்சாரம் தயாரிக்கலாம்.  தற்போது நடைபெறும் சோதனைச் சாதனங்கள் பெரிய துளைவடை வடிவு [Donut – Shaped Chambers] உடையவை. பெருத்த மின் காந்தச் சுவர்கள் சூழ்ந்து இருப்பவை.  அந்த சாதனத்தில் டியுடீரியம் & டிரிடியம் ஏகமூலங்கள் [Deuterium & Tritium Isotopes] பேரளவு சூடாக்கப்பட்ட ஒளிப்பிழம்பால்  [Superheated Plasma] அழுத்தப்பட்டு பிணைக்கப் படுகின்றன.  இந்த விதமான அணுக்கருப் பிணைப்பு இயக்கத்தில் ஹீலியம் உண்டாகி வெப்பசக்தியும் கூடவே ஒரு நியூட்ரான் விளைகிறது.  இந்த உயர் சக்தி நியூட்ரான் [High Energy]  அருகில் உள்ள உலோகச் சாதனங்களில் பட்டு சிறிதளவு  கதிரியக்கம் உண்டாகிறது.

Hydrogen – Boron Hot Fusion Reactor

போரான் – நீரக வாயு சூட்டுப் பிணைப்பு அணு உலை 

2017 டிசம்பர்  28 ஆம் தேதி அறிவிக்கப்பட்ட புதிய எரிக்கரு அணு உலை [Nuclear Fuel Reactor] பயன்படுத்தும் எரிக்கரு  ஹைடிரஜன் -1 & போரான் -11 [Hydrogen -1 & Boron -11].  இந்த எரிக்கரு 1 பில்லியன் டிகிரி உஷ்ணத்தில், பேரளவு அழுத்தத்தில் பிணைப்பியக்கம் தூண்டப் படுகிறது.  இந்த இயக்கத்தில் உண்டாகும் வெப்பசக்தி அனைத்தும்  3 ஹீலியம் -4 மூலகமாய் [ஆல்ஃபா கதிர்வீச்சாக]  [Alpha Radiation]  ஒவ்வொன்றும் 8 MeV அளவில்  வெப்பசக்தியாய் வெளியாகிறது.  ITER மாடல் அணு உலைபோல், H–B பிணைவு அணு உலையில்,  உயர் சக்தி நியூட்ரான்கள் [High Energy Neutron]  வெளியேறா.  இப்புதிய போரான் – ஹைடிரஜன் அணுப்பிணைவு அணு உலை முன்னோடி மாடல் இன்னும் உலகில் தயாரிக்கப் படவில்லை.  ஆனால் புதிய போரான் – நீரக வாயு அணு உலைகள் விரைவில் கட்டப்படும் என்று உறுதியாக எதிர்பார்க்கலாம்.

Laser Fusion Experiment

நாங்கள் செய்யப் போவது இதுதான்:  ஒரு கட்டுப்பாட்டு முறையில்  எரிக்கரு வில்லைச் சிமிழின் [Deuterium – Tritium Pellet [D-T Pellet]  Fuel Capsule] வெளிப்புற கவசத்தை எக்ஸ்ரே கதிர்கள் மூலம் உடைப்பதே எங்கள் முயற்சி.   அப்படிச் செய்யும் போது எரிக்கரு வில்லை [D-T Pellet]  அழுத்தம் அடைந்து, சரியான கட்டத்தில் அணுப் பிணைவு இயக்கம் தூண்டப்படும்.

ஜான் எட்வேர்ட்ஸ்  [Associate Director, NIF National Ignition Facility for Fusion Power]  

எக்ஸ்ரே கதிர்கள் தூண்டும் அணுப்பிணைவு முறையில் தீர்க்கப் பட வேண்டிய  ஒரு பெரும் இடையூறு : எருக்கருச் சிமிழ் முதிரா நிலையில் முன்னதாய் முறிந்து போய் [Premature Breakdown] விடுவது.   ஆற்றல் மிக்க எக்ஸ்ரே கதிர்களின் அடர்த்தி காலிச் சிமிழி குறியில் [Hohlraum –> Hollow Room]  தேவையான அழுத்தம் உண்டாக்கி அணுப் பிணைவைத் தூண்டுகிறது.

ஜான் எட்வேர்ட்ஸ்  [Associate Director, NIF National Ignition Facility for Fusion Power]  

Fusion power -4

பிண்டம் ! சக்தி ! அணுப்பிணைவு சக்தி !

இரண்டாம் உலகப் போர் நடந்து கொண்டிருந்த போது அமெரிக்காவில் லாஸ் அலமாஸ் இரகசிய தளத்தில் நூற்றுக் கணக்கான ஈரோப்பிய, வட அமெரிக்க விஞ்ஞானிகள் ஈடுபட்டு அணுப்பிளவுச் சக்தியைத் தொடரியக்கத்தில் உண்டாக்கிப் பேரழிவுப் போராயுதத்தைத் தயாரித்தனர் !  அதுபோல், அமைதிக் காலத்திலே பன்னாட்டு விஞ்ஞானப் பொறியியல் நிபுணர்கள் பிரான்ஸில் கூடி முதன்முதல் அணுப்பிணைவு எரிசக்தியில் பேரளவு மின்சக்தியை உற்பத்தி செய்யப் போகிறார்கள்.

கட்டுரை ஆசிரியர்

“அணுசக்தி ஆற்றல் உற்பத்தியில் அணுப்பிணைவு (Nuclear Fusion) முறைப்பாடு சூழ்வெளிப் பசுமைப் பண்பாடு மின்சாரமாகக் கருதப்படுகிறது. அது அணுப்பிளவு (Nuclear Fission) முறைப்பாடை விட சூழ்வெளித் துர்மாசுக்கள் மிகவும் குறைவானது.”

ஜாப் வாண்டர் லான் – நெதர்லாந்து எரிசக்தி ஆய்வு மையம். (June 28, 2005)

அணுப்பிணைவு மின்சக்தி சோதனையில் செய்த ஒரு பெரும் சாதனை

காலிஃபோர்னியாவின் வாரென்ஸ் லிவர்மோர் தேசீய சோதனைக் கூடத்தில்   [Dept of Energy’s Lawrence Livermore National Lab]  [National Ignition Facility- NIF]    ஆராய்ச்சியாளர்கள்  அணுபிணைவு சக்தி வெளியீட்டில் ஒரு நூதனச் சாதனையைச் சோதனையின் போது செய்து காட்டினர்.   தேசீய அணுப்பிணைவுத் தூண்டல்  யந்திரத்தில் [National Ignition Facility – NIF]  ஒருமித்த ஆற்றல் மிக்க 192  லேசர் ஒளிக்கதிர்களை உண்டாக்கி  [1.8 மெகா ஜூல்ஸ் சக்தியில்] (megajoules of energy) முதன்முதல் 500 டெட்ரா வாட்ஸ் மின்சார ஆற்றலை [tetrawatts power – 10^12 watts] உருவாக்கினர்.   இந்த அசுர மின்னாற்றல் ஒரு கணத்தில் அமெரிக்கா பயன்படுத்தும் மொத்த மின்சார யூனிட்டுகளை விட 1000 மடங்கு ஆகும்.  அதாவது பூமியிலே ஒரு குட்டிச் சூரியனை முதன்முதல் உண்டாக்கி விட்டார்.

சூரியன் போல் அணுப்பிணைவு நியதியில் பேரளவு வெப்ப சக்தி வெளியாக்கச் செய்யும் சோதனையில் முதன்முதல் சுயமாய்ப் அணுப்பிணைவுத் தொடரியக்கம் நீடிக்கச் செய்து பேரளவு மின்னாற்றலை உற்பத்தி செய்தனர்.  இவ்வரிய தகவல் செய்தி,  பிளாஸ்மா ஒளிப் பிழம்பு பௌதிக இதழில்  [Journal Physics of Plasmas] சமீபத்தில் வெளியிடப் பட்டுள்ளது.   ஆயினும் அணுப் பிணைவு மின்சக்தி  உற்பத்தி வாணிப நிலைக்கு வர,  இன்னும் மூன்று முக்கிய இடையூறுகள் தீர்க்கப்பட வேண்டும்.

Fusion Power Progress

சுய நீடிப்பு அணுப்பிணைவு இயக்க சக்திக்கு நேரும் மூன்று இடையூறுகள் :

1.  விசைகள் சமநிலைப்பாடு [Equilibrium of Forces]  :

பிளாஸ்மா  ஒளிப் பிழம்பு மீது இயங்கும் உந்துவிசைகள் சமநிலைப் படவேண்டும்.  இல்லாவிட்டால் பிளாஸ்மா ஓரினத் தன்மையின்றி முறிந்து போகும்.   இந்த விசைச் சமன்பாடு இழப்பு முதல் இடையூறு.   அதற்கு முடத்துவ அரண் அமைப்பு [Inertial Confinement] ஓர் விதிவிலக்கு.   அதனில் பௌதிக இயக்கம் பிளாஸ்மா முறிவதற்குள் விரைவாக நிகழ வேண்டும்.

2.  பிளாஸ்மா நீடிப்பு  [Plasma Stability] :

பிளாஸ்மா ஒருமைப்பாடு சிறு ஏற்ற இறக்கம், குறைவு நிறைவு செய்யப் பட்டு  முதல் வடிவத்துக்கு மீள வேண்டும்.   இல்லா விட்டால் பிளாஸ்மாவில் தவிர்க்க முடியாத பாதிப்புகள் நேரிடும்.   பிறகு அந்த தவறு செங்குத்தாக ஏறி பிளாஸ்மா முற்றிலும் அழிந்து போகும்.

3.   துகள்கள் போக்கு  [Transport of Particles] :

துகள்கள் இழப்பு பாதைகள் பூராவும் மிகவும் குறைய வேண்டும்.    அதைக் கசிய விடாமல் காப்பது முடத்துவ அரண் அமைப்பு [Inertial Confinement].

அணுப்பிணைவு மின்சக்தி சோதனையில் இந்த பிரச்சனைகள் தீர்க்கப்பட்டு விரைவில் வாணிப நிலைக்கு விரைவில் வரலாம் அல்லது சற்று நீடிக்கலாம்.  எப்படியும் 2050 ஆண்டுக்குள் அணுப்பிணைவு மின்சக்தி வர்த்தக ரீதியில் மின் விளக்குகளை ஏற்றிவிடும் என்று நிச்சயம் எதிர்பார்க்கலாம்.

“சூழ்வெளிக் காலநிலை மாற்றாமல் பேரளவு மின்சக்தி ஆக்க முடியும் என்ற எதிர்பார்ப்பு முயற்சியில் அணுப்பிணைவுச் சக்தி விருத்தி அடையப் பிரான்சில் விரைவாகக் கட்டப் போகும் அகில நாட்டு வெப்ப அணுக்கருச் சோதனை உலை (ITER) ஒரு பெரும் வரலாற்று மைல் கல்லாகக் கருதப்படுகிறது.”

பேராசிரியர் கிரிஸ் லிவெல்லின் ஸ்மித் (UK Atomic Energy Agency) (June 28, 2005)

“அகிலநாட்டு வெப்ப அணுக்கருச் சோதனை உலைக் (ITER) கட்டுமான வேலைகள் 2005 ஆண்டு இறுதியில் துவங்கும். திட்டத்தின் பொறித்துறை நுணுக்க விளக்கங்கள் யாவும் இப்போது முடிவாகி விட்டன. அகில நாடுகளின் முழுக் கூட்டுழைப்பில் (ஈரோப்பியன் யூனியன், ரஷ்யா, அமெரிக்கா, கனடா, சைனா, ஜப்பான்) பூரணமாகி இத்திட்டம் முன்னடி வைப்பதில் நாங்கள் பூரிப்படைகிறோம்.”

பையா ஆரன்கில்டே ஹான்ஸன் (European Commission) (June 28, 2005)

“கடந்த 15 ஆண்டுகளாக அகிலநாட்டு வெப்ப அணுக்கருச் சோதனை உலைத் (ITER) திட்ட அமைப்பில் பங்களித்து அது நிறுவனமாகச் சிக்கலான உடன்பாடுகளில் உதவி செய்தது குறித்து, அணுசக்திப் பேரவை (IAEA) பெருமகிழ்ச்சி அடைகிறது. மேலும் பரிதியை இயக்கும் மூலச்சக்தியான அணுப்பிணைவுச் சக்தியை விஞ்ஞானப் பொறியியல் சாதனங்களால் பூமியில் உற்பத்தி செய்யக் கூடுமா என்று ஆராயும் அத்திட்டத்துக்கும் அணுசக்தி பேரவை தொடர்ந்து உதவி புரியும்.”

வெர்னர் புர்கார்ட் (Deputy Director General & Haed IAEA Nuclear Science and Applications) (June 28, 2005)

“அகிலநாட்டு வெப்ப அணுக்கருச் சோதனை உலை (ITER) கூடிய விரைவில் இயங்க ஆரம்பித்து உலக மாந்தர் அனைவருக்கும் எதிர்காலத்தில் மின்சக்தி அளிக்கும் என்று உறுதியாக நம்புகிறோம்.”

நரியாக்கி நகயாமா (ஜப்பான் விஞ்ஞான அமைச்சர்) (June 28, 2005)

பிரான்சில் புது அணுப்பிணைவு மின்சக்திச் சோதனை நிலையம்

முதல் அகிலநாட்டு வெப்ப அணுக்கருச் சோதனை உலைக் (ITER) கட்டுமானத் திட்டத்தில் ஜப்பான் தேசம் கடுமையாகப் போட்டி யிட்டாலும் இறுதியில் வெற்றி பெற்றது பிரான்ஸ். அகில நாட்டு விண்வெளி நிலையத்துக்கு (International Space Station) அடுத்தபடி வெப்ப அணுக்கருச் சோதனை நிலைய அமைப்பே நிதிச் செலவு மிக்க (12 பில்லியன் டாலர் திட்டம்) ஓர் திட்டமாகக் கருதப் படுகிறது ! வெப்ப அணுக்கருச் சக்தி எனப்படுவது பரிதி ஆக்கும் அணுப்பிணைவுச் சக்தியைக் குறிப்பிடுகிறது. இதுவரைச் சூழ்வெளியை மாசுபடுத்திய அணுப்பிளவு, நிலக்கரி போன்ற பூதள எருக்கள் (Fission & Fossil Fuels) போலின்றி ஒப்புநோக்கினால் பேரளவு தூயதானது அணுப்பிணைவுச் சக்தியே (Fusion Energy) !

Fusion Reactor -1

பதினெட்டு மாதங்கள் தர்க்கத்துக்கு உள்ளாகி முடிவாக ஜூன் 28 2005 ஆம் தேதி மாஸ்கோவில் ஆறு உறுப்பினர் (ஈரோப்பியன் யூனியன், ரஷ்யா, அமெரிக்கா, கனடா, சைனா, ஜப்பான்) உடன்பட்டு அகிலநாட்டு வெப்ப அணுக்கருச் சோதனை உலையைக் [International Thermonuclear Experimental Reactor (ITER)] கட்டுமிடம் பிரான்ஸாக ஒப்புக் கொள்ளப் பட்டது. ITER திட்டத்தின் முக்கிய பங்காளர்கள் ஈரோப்பியன் யூனியன் (இங்கிலாந்து, பிரான்ஸ், ஜெர்மனி, இத்தாலி, ஸ்பெயின், ஹங்கேரி, டென்மார்க், ஆஸ்டியா, நெதர்லாந்து, போலந்து, ஸ்வீடன். . . ), ரஷ்யா, அமெரிக்கா, கனடா, சைனா, ஜப்பான், தென் கொரியா, இந்தியா). நிதிப் பங்களிப்பில் ஈரோப்பியன் யூனியன் 50% தொகை அளிப்பை மேற்கொண்டது. பிரான்ஸில் இடத்தேர்வு : மார்சேல்ஸ் நகருக்கு 60 கி.மீ. (37 மைல்) தூரத்தில் இருக்கும் “கடராச்சே அணுவியல் ஆராய்ச்சி மையம்” (Cadarache in France).

 

அகில நாட்டு அணுப்பிணைவுச் சோதனை நிலையத்தின் விபரங்கள்

வியன்னாவில் இருக்கும் அகில நாட்டு அணுசக்திப் பேரவை தலைமை அகத்தில் நீண்ட காலக் குறிக்கோள் திட்டமான அணுப்பிணைவுச் சக்தி ஆக்கத்தின் முன்னடி வைப்பு 2005 ஜூன் 28 ஆம் தேதியில் ஒரு பெரும் விஞ்ஞானச் சாதனையாக வெற்றிவிழாக் கொண்டாடப் பட்டது ! அன்றுதான் உலகத்திலே மிகப் பெரிய முதல் அகில நாட்டு அணுப்பிணைவுச் சக்தி சோதனை நிலையம் பிரான்சில் கட்டி இயக்கத் திட்டம் துவங்கியது ! அதை டிசைன் செய்து கட்டி இயக்கப் போகிறவர் ஒரு நாட்டை மட்டும் சேர்ந்த சில விஞ்ஞானிகள், பொறியியல் நிபுணர்கள் அல்லர். பன்னாட்டு விஞ்ஞானிகள் ! பன்னாட்டுப் பொறித்துறை வல்லுநர்கள் ! இரண்டாம் உலகப் போர் நடந்து கொண்டிருந்த போது அமெரிக்காவில் லாஸ் அலமாஸ் இரகசிய தளத்தில் நூற்றுக் கணக்கான ஈரோப்பிய, வட அமெரிக்க விஞ்ஞானிகள் ஈடுபட்டு அணுப்பிளவுச் சக்தியைத் தொடரியக்கத்தில் உண்டாக்கிப் பேரழிவுப் போராயுதத்தைத் தயாரித்தனர் ! அதுபோல், அமைதி காலத்திலே பன்னாட்டு விஞ்ஞானப் பொறியியல் நிபுணர்கள் பிரான்ஸில் கூடி முதன்முதல் அணுப்பிணைவு எரிசக்தியில் பேரளவு மின்சக்தி உற்பத்தி செய்யப் போகிறார்கள் !

அணுப்பிணைவுச் சோதனை நிலையம் 500 மெகாவாட் மின்சாரம் உற்பத்தி செய்யும்.

— நிலைய மின்சார உற்பத்தி : 500 MW
— நியூட்ரான் சக்தி : 14 MeV (Million Electron Volt).
— காந்த மதில் ஆற்றல் தகுதி : 0.57 MW/Square meter
— பிளாஸ்மா (கனல் பிழம்பு) பெரு ஆரம் : 6.2 மீடர்.
— பிளாஸ்மா (கனல் பிழம்பு) குறு ஆரம் : 2.0 மீடர்
— பிளாஸ்மா மின்னோட்டம் : 15 MA (Million Amps)
— பிளாஸ்மா கொள்ளளவு : 837 கியூபிக் மீடர்.
— வளையத்தின் காந்த தளம் 6.2 மீடரில் 5.3 T (Toroidal Field)
— நிலைய யந்திரங்கள் இயக்கத் தேவை : 78 MW
— நிலையத் திட்டச் செலவு : 12 பில்லியன் டாலர் (2005 நாணய மதிப்பு)

அணுப்பிணைவுச் சக்தி எப்படி உண்டாகிறது ?

சூரியனிலும் சுயவொளி விண்மீன்களிலும் ஹைடிரஜன் வாயுவை மிகையான ஈர்ப்பு விசை அழுத்தத்தில் 10 மில்லியன் டிகிரி செல்சியஸ் உஷ்ணத்தில் பிளாஸ்மா நிலையில் (கனல் பிழம்பு) இணைத்து அணுப்பிணைவுத் தொடரியக்கத்தில் ஹீலிய வாயும் வெப்பச் சக்தியும் வெளியாகின்றன. அந்த வெப்ப மோதலின் விளைவில் உயர்சக்தி நியூட்ரான்களும் (High Energy Neutrons) எழுகின்றன ! ஹைடிரன் ஏகமூலங்களான (Isotopes of Hydrogen) டியூடிரியம் & டிரிடியம் (50% Deuterium & 50% Tritium) அணுப்பிணைவு எருக்களாகப் பயன்படுகின்றன. ஹைடிஜன், டியூடிரியம், டிரிடியம் மூன்று வாயுக்களின் அணுக்கருவிலும் ஒரே ஒரு புரோட்டான் உள்ளது. ஆனால் டியூடிரியத்தில் ஒரு புரோட்டான், ஒரு நியூட்ரான் உள்ளன. டிரிடியத்தில் ஒரு புரோட்டானும், இரண்டு நியூட்ரான்களும் இருக்கின்றன. அவை பேரளவு உஷ்ணத்தில் (100 மில்லியன் டிகிரி செல்சியஸ்) பிளாஸ்மாவாகி ஒன்றுடன் ஒன்று இணைந்து ஹீலியமாகின்றன. அந்த உஷ்ணம் பரிதியின் உட்கரு உஷ்ணத்தை விட 10 மடங்கி மிகையானது !

 

அணுப்பிணைவுக்கு அத்தகைய மிகையான உஷ்ணம் ஏன் தேவைப் படுகிறது ? பரிதியின் வாயுக் கோளத்தில் 10 மில்லியன் டிகிரி செல்சியஸ் உஷ்ணம் உண்டாவதற்கு அதன் அசுர ஈர்ப்புச் சக்தி அழுத்தம் கொடுக்கிறது. அந்த உஷ்ணத்தில் அணுக்கருக்கள் ஒன்றை ஒன்று இழுத்துச் சேர்த்துக் கொள்கின்றன. ஆனால் மனிதர் உண்டாக்கும் அணுப்பிணைவு உலையில் அத்தகைய அழுத்தம் ஏற்படுத்த முடியாததால் அணுப்பிணைவை உண்டாக்கப் பத்து மடங்கு உஷ்ண நிலை தேவைப்படுகிறது. அந்த அழுத்தத்தை எப்படி உண்டாக்குவது ?

 

1. வாகன எஞ்சின் போல் பிஸ்டன் மூலம் வாயுக்களில் அழுத்தம் உண்டாக்கி வாயுக்களில் உஷ்ணத்தை அதிகமாக்கலாம்.

2. மின்சார ஓட்டத்தை ஏற்படுத்தி வாயுக்களில் உஷ்ணப் படுத்தலாம்.

3. வாயுக்களை ஓர் அரணுக்குள் உயர்சக்தி நியூட்ரான்களால் தாக்கி உஷ்ணத்தை மிகையாக்கலாம்.

4. நுண்ணலைகள் (Microwaves) மூலம் அல்லது லேஸர் கதிர்களால் (Laser Beams) வாயுக்களில் உஷ்ணத்தை மிகைப்படுத்தலாம்.

மூன்று முறைகளில் பிளாஸ்மா கனல் பிழம்பை உண்டாக்கலாம்:

1. பிளாஸ்மா அரண் (Plasma Confinement) (பரிதி, விண்மீன்களில் உள்ளதுபோல்)

2. முடத்துவ முறை (Inertial Method).

3. காந்தத் தளமுறை (Magnetic Method).

சூரியன் ஓர் அணுப் பிணைவுத் தீப்பந்து!

சூரியன் பிணைவுச் சக்தியை [Fusion Energy] உற்பத்தி செய்யும், பிரம்மாண்டமான ஓர் அணுக்கருப் பிழம்பு உலை [Plasma Reactor]! அண்ட வெளியில் ஆயிரம் ஆயிரம் சூரியன்கள், சுய ஒளி விண்மீன்கள் அணுப் பிணைவுச் சக்தியைத் தான், பிரபஞ்சம் தோன்றியது முதல் வாரி இறைத்து வருகின்றன! 4000 மில்லியன் ஆண்டுகளாக, சூரியன் வினாடிக்கு 40 கோடி பில்லியன் MW வெப்ப சக்தியைத் தொடர்ந்து வெளியாக்கிக் கொண்டிருக்கிறது! தீக்கோளத்தின் நடுப் பகுதி உஷ்ணம் 20 மில்லியன் டிகிரி K சூரியவாயு அழுத்தம், பூவாயு [Earth ‘s Atmosphere] அழுத்ததை விட 400 மில்லியன் மடங்கு மிகையானது! சூரிய கோள அமைப்பு, வெங்காயத் தோல்கள் போல் அடுக்கடுக்காக இருக்கிறது. வாயுக்களின் அடர்த்தி [Density] ஈயத்தைப் போல் 12 மடங்கு. சூரியன் பேரளவு உஷ்ணத்தில், தன் ஈர்ப்புப் [Gravitation] பேரழுத்தத்தில், வினாடிக்கு 4 மில்லியன் டன்வாயு அணுக்கருத் துகள்களைப் பிணைத்து, அளக்க முடியாத பிணைவு சக்தியை உண்டாக்குகிறது. ஒரு தம்ளர் நீரில் உள்ள ஹைடிஜன் வாயுவைப் பிரித்துப் பிணைக்க முடிந்தால், அதிலிருந்து வெளியாகும் சக்தி 600 ஆயிரம் லிட்டர் பெட்ரோல் எரிந்து தரும் சக்திக்குச் சமமாகும்! ஆனால் பூமியில் பிணைவுச் சக்தியைத் தூண்டி வெளிப்படுத்த, உலைகளில் சூரியவாயு போல் பேரழுத்தமும், பெருமளவு உஷ்ணமும், விஞ்ஞானிகளால் உண்டாக்க முடியுமா ?

 

 

1952 நவம்பர் முதல் தேதியில் அமெரிக்காவும், 1953 ஆகஸ்டு 20 இல் ரஷ்யாவும் வெப்ப அணுக்கரு ஆயுதமான [Thermo-Nuclear Weapon] ஹைடிரஜன் குண்டைத் [H-Bomb] தயாரித்து முதன் முதல் ஒரு குட்டிச் சூரியனை உண்டாக்கி வெடிக்க வைத்து வெற்றி பெற்றன. ஆனால் அணுப்பிணைவுப் பிழம்பை ஓர் உலை அரணுக்குள் அடக்கி நீடிக்கச் செய்ய எந்த நாட்டு விஞ்ஞானி யாலும் இதுவரை முடியவில்லை! அப்பெரும் முயற்சிதான் அகில உலகில் இருபதாம் நூற்றாண்டு விஞ்ஞானிகளுக்கு மிகச் சிக்கலான பொறிநுணக்கப் பிரச்சனையாகவும் திறமைக்குச் சவாலாகவும் ஆகியிருக்கிறது! ஆயினும் உலகில் பெருமளவு மின்சக்தியை இன்னும் பழைய அணுமின் நிலையங்கள்தான் பரிமாறிக் கொண்டிருக்கின்றன. எதிர் காலத்தில் மின்சக்திப் பற்றாக் குறை வினாவுக்கு முடிவான விடை, பெருமளவில் மின்திறம் வெளியாக்கும் பிணைவுச் சக்தி ஒன்றே ஒன்றுதான்! ஆனால் அந்த நிலையத்தை வர்த்தக முறையில் உருவாக்கி இயக்குவதுதான் உலக எஞ்சினியர்களுக்கு மாபெரும் போராட்டமாகவும், திறமையைச் சோதிப்பதாகவும் இருந்து வருகிறது!

 

அணுப்பிணைவை ஆய்வுக் கூடத்தில் எவ்வாறு ஆக்குவது ?

ஹைடிரஜன் வாயுவுக்கு இரண்டு ‘ஏகமூலங்கள்’ [Isotopes] உள்ளன. ஒன்று டியூட்டிரியம் [Deuterium], மற்றொன்று டிரிடியம் [Tritium]. ஏகமூலங்கள் என்பவை, ஒரே புரோட்டான் [Proton] எண்ணிக்கை கொண்டு, வெவ்வேறு நியூட்ரான் [Neutrons] எண்ணிக்கை யுள்ள மூலகங்கள் [Elements]. ஏகமூலங்கள் ஒரே மின்னீர்ப்பு [Electric Charge] மேவி, வெவ்வேறு அணுப்பளுவைக் [Atomic Mass] கொண்டவை. மூலகங்களின் அணிப் பட்டியலில் [Periodic Tables of Elements], ஏகமூலங்கள் யாவும் ஒரே இல்லத்தில் இடம் பெறுபவை. டியூட்டிரியம் மூலஅணு [Molecule] நீரில் 7000 இல் ஒன்றாக இயற்கையில் இருப்பதை, ரசாயன முறையில் பிரித்து எடுக்க வேண்டும். டிரிடியம் கனநீர் யுரேனிய அணு உலைகள் [Heavy Water Uranium Reactors] இயங்கும் போது, கனநீரில் உண்டாகிறது. கனடாவில் இயங்கும் காண்டு [CANDU] அணு உலைகளில் நிறைய கனநீரும், டிரிடியமும் இருப்பதால், பிணைவுச் சக்தி ஆய்வுக்குத் தேவையான எளிய வாயு மூலகங்கள் [Light Elements] கனடாவில் எப்போதும் கிடைக்கின்றன. ஆராய்ச்சி முறையில் பயன் படுத்திய போது, எளிய மூலகங்களான ஹைடிரஜன், டியூட்டிரியம், டிரிடியம், லிதியம் ஆகியவற்றில், [டியூட்டிரியம் + டிரிடியம்] வாயு இணைப்பே அதிக வெப்ப சக்தியை ஈன்றதால், உலகில் பல நாடுகள் அணுப் பிணைவு உலையில், அவ்விரண்டு வாயுக்களையே எரிப் பண்டங்களாய் உபயோகித்து வருகின்றன. இந்த இயக்கம் தூண்டுவதற்கு வேண்டிய உஷ்ணம், 80 மில்லியன் டிகிரி C.

 

டியூட்டிரியம் +டிரிடியம் –> ஹீலியம் +நியூட்ரான் +17.6 MeV சக்தி Deuterium +Tritium –> Helium +Neutron +17.6 MeV Energy

இருபதாம் நூற்றாண்டில் உருவான மிக மேம்பட்ட ஆய்வுப் பிணைவு உலை [Fusion Reactor] ‘டோகாமாக்’ [Tokamak] என்பது, காந்தக் கம்பிகள் சுற்றப் பட்டு டோனட் [Donut] வளையத்தில் அமைந்த ஒரு பிரம்மாண்ட மான மின்யந்திரம். ‘டோகாமாக் ‘ என்பது ரஷ்யச் சுருக்குப் பெயர். அதன் பொருள்: வளை காந்தக் கலம் [Toroidal Magnetic Chamber]. அதனுள்ளே பேரளவு காந்தத் தளத்தைக் கிளப்பி பல மில்லியன் டிகிரி உஷ்ணத்தில் மின்னியல் வாயுப் பிழம்பை [Plasma] உண்டாக்கி வளையச்சுவர் கடும் வெப்பத்தில் உருகிப் போகாமல் உள்ளடக்க வேண்டும்! இத் தேவைக்கு உகந்த உலோகம் இன்னும் கண்டு பிடிக்கப்படவில்லை! பிண்டம் நான்கு வித வடிவுகள் [Four States of Matter] கொண்டது. திடவம், திரவம், வாயு, பிழம்பு [Solid, Liquid, Gas & Plasma]. வாயு அதிக உஷ்ணத்தில் நேர், எதிர் மின்னிகளாய்ப் [Positive, Negative Ions] பிரிந்து பிழம்பு வடிவாக மாறி மின்கடத்தி [Electrical Conductor] யாகிறது. பிணைவுச் சக்தியை மூலமாகக் கொண்டு இயங்கும் மின்சக்தி நிலையத்தில், ஹீலிய வாயு பிழம்பின் வெப்பப் போர்வையாகவும், கடத்தியாகவும் [Helium Blanket for Plasma & Heat Transport Medium] பயன் ஆகலாம். சூடேரிய ஹீலிய வாயு வெப்ப மாற்றியில் [Heat Exchanger] நீராவியை உண்டாக்கி டர்பைன் ஜனனியை [Turbine Generator] ஓட்டச் செய்யலாம். அமெரிக்காவின் மிகப் பெரும் ஆய்வு டோகாமாக், நியூ ஜெர்ஸி பிரின்ஸ்டன் பல்கலைக் கழகத்தில் 1981 ஆம் ஆண்டு நிறுவப்பட்டு இயங்கி வருகிறது.

 

மூன்று வித முறைகளில் அனல் பிழம்பை அரணிட்டு [Plasma Confinement] அணுப்பிணைவு இயக்கம் நிகழ்த்தலாம். முதலாவது முறை ‘ஈர்ப்பியல் அரண் பிணைப்பு ‘ [Gravitational Confinement Fusion]. இம்முறைக்கு சூரிய, சுடரொளி விண்மீன்களில் இயங்கும் பேரளவு உஷ்ணம், வாயுப் பேரழுத்தம் தேவைப் படுகிறது. மனிதனால் இவற்றைப் பூமியில் சாதிக்க முடியாது! அடுத்தது, ‘காந்தவியல் அரண் பிணைப்பு’ [Magnetic Confinement Fusion]. ஆய்வுக் கூடத்தில் இது சாத்திய மானது. 1950 ஆம் ஆண்டு முதல் ஆராய்ச்சி முறைக்கு உலகெங்கும் பயன் படுகிறது.

 

இம்முறையில் உருவானதுதான் டோகாமாக் [Tokamak] யந்திரம். அனல் பிழம்பு நீடிக்க, மூன்று முக்கிய நிபந்தனைத் தொடர்புகள் பொருந்த வேண்டும்: உஷ்ணம், காலம், அடர்த்தி [Temperature, Time & Density]. 200 மில்லியன் டிகிரி உஷ்ணப் பிழம்பு சில வினாடிகள் நீடிக்க, வாயு அடர்த்தி ஓரளவு தேவை. இந்த உறவை ‘லாசன் நியதி ‘ [Lawson Criterion] என்று கூறுவர். மூன்றாவது முறை: ‘முடவியல் அரண் பிணைப்பு’ [Inertial Confinement Fusion]. இதில் லேசர் வீச்சுக் கதிர்களைப் [Laser Beams] பாய்ச்சி உள்வெடிப்பு [Implosion] நிகழ்த்தி அனல் பிழம்பு உண்டு பண்ணிப் பிணைப்பு சக்தி ஏற்படுத்துவது. இம்முறை பெரும்பாலும் அணு ஆயுதம் [Nuclear Weapons] தயார் செய்ய, யுத்த விஞ்ஞானிகளுக்குப் பயன் படுகிறது.

 

 

அணுப்பிணைவுச் சக்தியின் நிறைபாடுகள்! குறைபாடுகள்!

பிணைவுச் சக்தி பிளவுச் சக்தியை விட பல முறைகளில் மேன்மை யுற்றது. அணுப்பிணைவு சக்தியில், அணுப் பிளவு சக்திபோல் உயிர் இனங்களைத் தாக்கி வதைக்கும் பயங்கரக் கதிரியக்கம் [Radioactivity] அதிக அளவு இல்லை! பிணைவுச் சக்தியால் எழும் கதிரியக்கம் மிகச் சிறிதளவே! அமெரிக்காவின் திரீமைல் தீவு, ரஷ்யாவின் செர்நோபிள் அணுப்பிளவுச் சக்தி நிலையங்களில் ஏற்பட்ட பயங்கர விபத்தின் போது, உலையின் எரிக்கோல்கள் பல உருகிப் பெரும் சிக்கலை உண்டாக்கியது! பிணைவு உலைகளில் எரிக்கோல் உருகிப் போகும் அபாயம் எதுவும் இல்லை! அணுப் பிணைவு நிலையங்களிலிருந்து தினம் வெளியேறும் கழிவு வாயுக்கள் மனிதர் மற்றும் இதர உயிரினங் களுக்குத் தீங்கு தருவன அல்ல! அவைச் சூழ்வெளியைச் [Environment] சுத்தமாக வைத்திருக்க உதவி புரிபவை! பிணைவு இயக்கம் ரசாயனத் தீயின் கடும் விளைவுகளை உண்டாக்காது! மேலும் பிணைவு உலைகளில் பயன்படும் எரி வாயுக்கள் ஹைடிரஜன், டியூட்டிரியம் உலகெங்கும் நீரில் அளவற்ற கன அளவு கிடைக்கிறது. எதிர் காலத்தில் பல நூற்றாண்டுகளுக்கு வேண்டிய, வாயு எரி பொருளுக்குப் பஞ்சமே இருக்காது!

ஆராய்ச்சி அணுப்பிணைவு உலைகளுக்கு இதுவரை உலக நாடுகள் 2 பில்லியன் டாலர்கள் செலவழித் துள்ளன! கால தாமதம் ஆவதால், இன்னும் 50 பில்லியன் டாலர் தொகை செலவாகலாம் என்று ஊகிக்கப் படுகிறது. மேலும் மிகச் சக்தி வாய்ந்த மின்காந்தத் தளம், அணுப்பிணைவு நிலையத்தில் இயங்குவதால், அதை ஆட்சி செய்யும் மனிதருக்கு அதனால் விளையும் தீங்குகள் என்ன என்பது யாருக்கும் தெரியாது! அடுத்து உலையில் பயன்படும் லிதிய [Lithium] திரவம் ரசாயன இயக்க உக்கிரம் உடையது! அதன் விளைவு களையும் அறிய வேண்டும். அனல் பிழம்புக்கு அதி உன்னத சூன்ய நிலை [High Vacuum] உலை வளையத்தில் நீடிக்கப்பட வேண்டும்! விசை மிக்க மின்காந்த அமுக்கமும், வேறுபாடு மிக்க கடும் உஷ்ண ஏற்ற இறக்கத்தால் நேரும் வெப்ப அழுத்தமும், அதி உக்கிர நியூட்டிரான் கணைத் தாக்குதலால் நிகழும் அடியும், தாங்கிக் கொண்டு நீண்ட காலம் உறுதியாக இயங்கும், நிலையச் சாதனங்களைக் கண்டு பிடிப்பது சிரமான முயற்சி.

அணுப்பிணைவு சக்தி உற்பத்தியின் மேம்பாடுகள்!

அணுப்பிணைவு உலைகளுக்கு வேண்டிய எரு உலக நீர்வளத்தில் எண்ணிக்கை யற்ற அளவு உள்ளது. பேரளவு ஆற்றல் கொண்ட அணுப்பிணைவு சக்தி நிலையங்களை அமைப்பது சாத்திய மாகும். மாபெரும் ஆற்றல் கொண்ட அணுப்பிணைவு நிலையத்துக்கும் தேவையானது சிறிதளவு எருதான்! உதாரணமாக 1000 MWe நிலையத்துக்கு ஓராண்டு வேண்டிய எரு 0.6 மெட்ரிக் டன் [1320 பவுண்டு] டிரிடியம்! பிணைவு சக்தியின் தீப்பிழம்பு மின்கொடைத் துகள்களின் வேகங்களைத் தணித்து, நேரடியாக அவற்றை மிகையான மின்சக்தி அழுத்தமாக [High Voltage Electricity] மாற்றிவிடலாம்! அம்முறையில் நீராவி உண்டாக்க கொதிகலம், வெப்பசக்தியை யந்திர சக்தியாக மாற்ற டர்பைன், தணிகலம் யந்திர சக்தியை மின்சக்தியாக மாற்ற மின்சார ஜனனி போன்ற பொது வெப்பச் சாதனங்கள் தேவைப்படா! பிணைவு உலைப் பாதுக்காப்பு அத்துடனே இணைந்துள்ளது. இயக்கத்தின் போது சிக்கல் நேர்ந்தால், அணு உலைத் தானாக விரைவில் நின்று விடும். பிளவு அணு உலைகளைப் போன்று, கதிரியக்கமோ, கதிர்வீச்சுக் கழிவுகளோ விளைவதில்லை! பிணைவு அணு உலையில் எழும் நியூட்ரான்கள் விரைவில் தீவிரத்தை இழப்பதால் பாதகம் மிகக் குறைவு. உலையின் மற்ற பாகங்களை நியூட்ரான் தாக்குவதால் எழும் இரண்டாம் தர கதிர்வீச்சுகளைக் கவசங்களால் பாதுகாப்பது எளிது. கதிர்ப் பொழிவுகளால் சூழ்மண்டல நாசம், நுகரும் காற்றில் மாசுகள் விளைவு போன்றவை ஏற்படுவதில்லை!

வெப்ப அணுக்கரு நிலையத்தை எதிர்த்து கிரீன்பீஸ் வாதிகள் கூக்குரல் !

ஒரு கிலோ கிராம் அணுப்பிணைவு எருக்கள் (Fusion Fuel Deuterium +Tritium) 10,000 டன் நிலக்கரிக்குச் (Fossil Fuel) சமமான எரிசக்தி அளிக்கும் ! இத்தகைய பேரளவுப் பயன்பாடு இருப்பதாலும், சிறிதளவு கதிரியக்கம் உள்ளதாலும் அணுப்பிணைவு எரிசக்தி அகில நாட்டு பொறித்துறை நிபுணரின் கவனத்தைக் கவர்ந்திருக்கிறது ! அணுப்பிளவு மின்சக்தி நிலையங்கள் போன்று அணுப்பிணைவு மின்சக்தி நிலையங்களில் நீண்ட கால உயர்நிலைக் கதிரியக்கப் பிளவுக் கழிவுகள் (Long Term High Level Fission Product Wastes) கிடையா ! சில பசுமைக் குழுவாதிகள் 2005 ஜூன் மாத ITER கட்டட அமைப்புத் திட்டத்தை பண விரயத் திட்டமென்று குறை கூறினர் ! அணுப்பிணைவு மின்சக்தி உற்பத்தி செயல் முறைக்கு ஒவ்வாதது என்று தமது நம்பிக்கை இல்லாமையை அவர் தெரிவித்தார். “12 பில்லியன் டாலரில் 10,000 மெகாவாட் கடற்கரைக் காற்றாடிகள் மூலம் தயாரித்து 7.5 மில்லியன் ஐரோப்பிய மக்களுக்கு மின்சாரம் பரிமாறலாம்,” என்று அகில நாட்டு கிரீன்பீஸ் பேரவையைச் சேர்ந்த ஜான் வந்தே புட்டி (Jan Vande Putte) கூறினார். “உலக நாடுகளின் அரசுகள் பணத்தை வீணாக விஞ்ஞான விளையாட்டுச் சாதனங்களில் விரையமாக்கக் கூடாதென்றும், அவை ஒருபோதும் மின்சக்தி அனுப்பப் போவதில்லை என்றும், 2080 ஆம் ஆண்டில் குவிந்து கிடக்கும் “மீள் பிறப்பு எரிசக்தியைப்” (Renewable Energy) பயன்படுத்தாமல் இப்போதே ஆரம்பிக்க வேண்டும் என்றும் பறைசாற்றினர்.

 

++++++++++++++++++++++++++++++

தகவல்

Picture Credits: NASA, JPL; National Geographic; Time Magazine, Astronomy Magazine.

1. Our Universe – National Geographic Picture Atlas By: Roy A. Gallant (1986)
2. 50 Greatest Mysteries of the Universe – How Did the Solar System form ? (Aug 21, 2007)
3. Astronomy Facts File Dictionary (1986)
4. The Practical Astronomer By Brian Jones & Stephen Edberg (1990)
5. Sky & Telescope – Why Did Venus Lose Water ? [April 2008]
6. Cosmos By Carl Sagan (1980)
7. Dictionary of Science – Webster’s New world [1998]
8. The Universe Story By : Brian Swimme & Thomas Berry (1992)
9. Atlas of the Skies – An Astronomy Reference Book (2005)
10 Hyperspace By : Michio kaku (1994)
11 Universe Sixth Edition By: Roger Freedman & William Kaufmann III (2002)
12 Physics for the Rest of Us By : Roger Jones (1992)
13 National Geographic – Frontiers of Scince – The Family of the Sun (1982)
14 National Geographic – Living with a Stormy Star – The Sun (July 2004)
15 The World Book of Atlas : Anatomy of Earth & Atmosphere (1984)
16 Earth Science & Environment By : Dr. Graham Thompson & Dr. Jonathan Turk (1993)
17 The Geographical Atlas of the World, University of London (1993).
18 Hutchinson Encyclopedia of Earth Edited By : Peter Smith (1985)
19 The Origin of Earth (www.moorlandschool.co.uk/earth/earthorigin.htm)
20 IAEA Report – France to Host ITER International Nuclear Fusion Project (June 28, 2005)
21 IAEA Report Focus on Fusion By : IAEA Staff
22 IAEA Report – Fusion : Energy of the Future By : Ursula Schneider IAEA Physics Section
World Atom Staff Report.
23 BBC News : France Gets Nuclear Fusion (Experimental) Plant.
24 World : France Chosen to Host Experimental Fusion Reactor Project By : Breffni O’Rourke(June 28, 2005).
25 http://www.thinnai.com/?module=displaystory&story_id=40203101&format=html(அணுப்பிணைவுச் சக்தி அவனியின் எதிர்கால மின்சக்தி)
26 http://www.thinnai.com/?module=displaystory&story_id=40303172&format=html(இருபது ஆண்டுகளில் அணுப்பிணைவுச் சக்தி ஆக்கத்தில் வளர்ச்சி)
27 http://www.thinnai.com/?module=displaystory&story_id=40508052&format=html (21 ஆவது நூற்றாண்டின் அணுப்பிணைவுச் சக்தி ஆற்றலுக்கு லேஸர் கதிர்கள்)
28 http://www.thinnai.com/?module=displaystory&story_id=40709271&format=html(கதிரியக்கம் இல்லாத எதிர்கால அணுப்பிணைவு மின்சக்தி நிலையம்)

29.  http://www.popularmechanics.com/science/energy/next-generation/is-fusion-power-finally-for-real  [June 21, 2011]

30.  http://world-nuclear.org/info/Current-and-Future-Generation/Nuclear-Fusion-Power/#.UkceJNNza9I  [August, 2013]

31.  http://www.opli.net/opli_magazine/eo/2013/laser-fusion-experiment-yields-record-energy-at-llnl.aspx  [August 26, 2013]

32.  http://en.wikipedia.org/wiki/National_Ignition_Facility   [September 17, 2013]

33.  http://en.wikipedia.org/wiki/Fusion_power   [September 27, 2013]

34.  http://www.cbc.ca/news/technology/nuclear-fusion-hits-energy-milestone-1.2534140 [February 12, 2014]

35. http://www.world-nuclear-news.org/C-Progress-in-controlling-fusion-heat-bursts-18031501.html  [March 18, 2015]

36  https://www.forbes.com/sites/ethansiegel/2015/08/27/how-close-are-we-to-nuclear-fusion/#25a93ab916ec  [August 27, 2015]

36 (a). https://gizmodo.com/the-real-problem-with-fusion-energy-1777994830 [May 27, 2016]

37. https://www.theguardian.com/environment/2016/dec/02/after-60-years-is-nuclear-fusion-finally-poised-to-deliver [December 2, 2016]

38.  https://www.livescience.com/61298-new-fusion-reactor-uses-boron-and-hydrogen.html  [December 28, 2017]

39.  https://en.wikipedia.org/wiki/Fusion_power  [January 10, 2018]

40.  https://www.iter.org/sci/beyonditer

41 https://physics.stackexchange.com/questions/178671/hydrogen-boron-fusion

42.  http://world-nuclear.org/information-library/current-and-future-generation/nuclear-fusion-power.aspx  [November, 2017]

43.http://world-nuclear.org/information-library/current-and-future-generation/nuclear-fusion-power.aspx  [Noember 2017]

44. https://www.sciencedaily.com/releases/2018/10/181009175515.htm  [October 9, 2018]

45. https://en.wikipedia.org/wiki/Fusion_power  [October 27, 2018]

+++++++++++++++

S. Jayabarathan (jayabarathans@gmail.com)  October 27, 2018 [R-2]

https://jayabarathan.wordpress.com/

2011 இல் ஜப்பான் புகுஷிமா அணுமின் உலைகளில் நேர்ந்த வெடி விபத்து விளைவுக் கதிரியக்க நோயால் முதல் ஊழியர் மரணம்

Featured

சி. ஜெயபாரதன் B.E.(Hons) P.Eng (Nuclear) கனடா
++++++++++++++

மேம்பட்ட படைப்பு ஒன்றை உருவாக்க ஒரு பாதை இருக்கு மானால், அதனால் விளையப் போகும் பாதிப்புகளின் முழுத் தோற்றத்தை முதலில் ஆழ்ந்து அறிந்த பிறகுதான் அதைத் துவக்க வேண்டும்.

தாமஸ் ஹார்டி [Thomas Hardy 1840–1928]

“இயற்கை அபாய நிகழ்ச்சிகளுக்கு முக்கியத்தும் அளிக்காமல் நாங்கள் பயங்கரத் தொழிற்சாலைகளை அமைத்து விருத்தி செய்யப் போவ தில்லை.  சமீபத்தில் நேர்ந்த கோர விபத்துக்களில் ஏராளமான மனித உயிரிழப்புகள் நீரடிப்பால் நேர்ந்துள்ளன.  ஆதலால் புதிய அணுமின் நிலையங்களும் பெரிய எரிசக்தி ஆயில் சுத்திகரிப்புத் தொழிற் சாலைகளும் கடற்கரைத் தளங்களில் நிறுவகம் ஆவதற்கு முன்பு நாமெல்லாம் பத்து முறை ஆழ்ந்து சிந்தித்துப் பார்க்க வேண்டும்.”

நிக்கோலை லாவெராவ் (President, Russian Academy of Sciences)

++++++++++++++

See the source image

காற்றடிப்புத்  திசைபோகும் கதிரியக்கப் பொழிவு

++++++++++
1. https://youtu.be/EbVBHeB_UGQ
2. https://youtu.be/T4ISXwRCoUw
3. https://youtu.be/kbzCKYWmg2w
5.  https://youtu.be/JMaEjEWL6PU
6. https://youtu.be/spg62-MrYpQ
++++++++++++++++
See the source image
கதிரியக்க நோயால் மரணம்
புகுஷிமா அணுமின் உலை வெடிப்பு விளைவால் முதல் ஜப்பான் ஊழியர் மரண அறிவிப்பு
2018 செப்டம்பர் 5 ஆம் தேதி ஜப்பான் அரசாங்கம் முன்வந்து 2011 மார்ச்சு மாதம் நேர்ந்த சுனாமிப் பேரலைத் தாக்குதலால்,  வெப்பத் தணிப்பு நீரின்றி, புகுஷிமா அணுமின் உலைகள் வெடித்ததில் பேரளவு கதிரியக்கம் பரவி, ஏழு வருடங்கள் கடந்து புற்றுநோயால் முதல் ஊழியர் ஒருவர் இறந்து போனதை வெளியிட்டுள்ளது.   ஊழியர் வயது ஐம்பதுக்கு மேலிருக்கும்.  2011 இல் 9.0 ரிக்டர் அளவு கடற்பூகம்பம் ஏற்பட்டு ஓர் அசுரச் சுனாமி எழுந்து,  18,000 ஜப்பானியர் மரணம் அடைந்தார்.  கடற்கரையில் இயங்கிக் கொண்டிருந்த புகுஷிமா அணுமின் உலைகள் உடனே நிறுத்தம் அடைந்தாலும், எரிந்து கொண்டிருந்த யுரேனிய எரிக்கோல்களுக்கு வெப்பத் தணிப்பு நீரோட்டத்தை ஜப்பான் பொறியியல் அதிகாரிகள் உண்டாக்க முடியவில்லை.  அதனால் நீராவி அழுத்தம் கூடி கட்டடம் வெடித்து, கதிரியக்க மூட்டம் சூழ்வெளி எங்கும் பரவியது.  2011 இல் நேர்ந்த புகுஷிமா அணுமின் உலை வெடிப்புகள் 1986 இல் சோவியத் ரஷ்யா செர்நோபிள் அணு உலை வெடிப்பை விடப் பன்மடங்கு தீவிர மானது,  தீங்கிழைப்பது, நெடுங்காலம் நீடிப்பது. செலவைக் கொடுப்பது
See the source image
கதிரியக்க அடிப்பும், உடல்கூறு விளைவுகளும்
.இப்போது ஜப்பானின் தொழில் ஊழியர் உடல்நலச் சீரமைப்பு  அமைச்சகம், புப்புசப் புற்று நோயில் இறந்த அந்த ஊழியருக்கு நட்டயீடுத் தொகை அளிக்க சட்டமிட்டு முன் அறிவித்துள்ளது. இறந்த ஊழியர் ஜப்பானில் உள்ள புகுஷிமா, மற்றும் உள்ள சில அ?ணுமின் உலைகளில் 35 ஆண்டுகள் வேலை செய்தவர்.  அவரது புற்றுநோய் பீடிப்பு 2016 பிப்ரவரியில் கண்டு பிடிக்கப் பட்டது.  அவர் விபத்து நேர்ந்த 2011 மார்ச்சு முதல் டிசம்பர் வரை அவசரத் தீவிர வேலைகளில் நேரடியாக ஈடுபட்டவர்.  ஜப்பான்    உடல்நலச் சீரமைப்பு அமைச்சகம் இதற்கு முன்பு புகுஷிமா விபத்தில் நான்கு ஊழியர் மிகையான கதிரடிப்பில் தாக்கப் பட்டிருந்ததை அறிவித்திருந்தது.  ஐந்து நபர்களில் ஒருவரே இறந்துள்ளதாகத் தெரிகிறது.  சுனாமிப் பேரலை அடிப்பால் 18,000 பேர் உயிரிழந்தார்;  160,000 பேர் புலம்பெயர்ந்தார்;  ஐந்து பேர் மிகையான கதிரடி பெற்றார். ஒருவர் கதிரடியால் இறந்தார்.

See the source image

புகுஷிமா அணுமின் உலைப் பகுதி 
வான் மட்டக் கதிரியக்கப் பதிவு 

புகுஷிமா அணுமின் உலை வெடிப்புகளால் சுமார் 160,000 ஜப்பானியர் புலம்பெயர நேர்ந்தது.  கதிர்வீசும் கதிரியக்கத் தூசி துணுக்குகள் ஜப்பான் தேசத்தின் இருபுறமும் நீண்டகாலம்  பரவின.  பல ஏக்கர் பரப்பளவு கதிரியக்க தளப் பொழிவுகளை யும், சேர்ந்து போன பல்லாயிரம் டன் கதிரியக்க திரவங்களை யும் அடைத்து வைக்கப் பூத வடிவில் பெரும் இரும்புத் தொட்டி கள் அமைக்க வேண்டியதாயிற்று.  கதிர்த்தீண்டல் தளப் பரப்புகளைத் துடைக்கப் பல வெளிநாட்டு [கொரியா] ஊழியர் அழைத்து வரப்பட்டார்.   2017 ஆண்டில் 250,000 வெளிநாட்டு ஊழியர்கள் கதிர்த்தீட்டைத் துடைக்க 182 கம்பேனிகள்  வேலை செய்தன.

“இந்த எதிர்பாராத துன்பமய நிகழ்ச்சி ஜப்பானில் எதிர்கால அணுமின் சக்தித் திட்டங்களைத் தவிர்க்கப் போவதில்லை.  புதிய அணுமின் சக்தி உற்பத்தித் திட்டங்கள் செம்மைப் படுத்தப் பட்டாலும் பெருமளவில் மாற்றம் அடையப் போவதில்லை.  இப்போதும் அணுமின் சக்தி ஆதரிப்பாளர் எண்ணிக்கை எதிர்ப்பாளர் எண்ணிக்கையை விட இரண்டரை மடங்கு (42% Versus 16%) மிகையாகவே உள்ளது.”

பேராசிரியர் அதனாஸ் தஸேவ் (Bulgarian Nuclear Forum, Energy Expert) 

See the source image

+++++++++++++++++++++++

 

World demand

(Power Demand :1980 – 2035)

+++++++++++++++

Reactors operating & under construction

மின்சார உற்பத்தி பற்றி மாறாகப் பேசும் பேரளவு தொழிற்துறை வல்லுநருக்கு எதிராகப் பெரும்பான்மை உட்துறைக் குழுவினர் அணுமின்சக்தியே எதிர்காலத் தேவையைப் பூர்த்தி செய்யும் என்றும், போதிய இயக்கத் திறன் கொண்டிருப்பதுடன் இன்னும் சுற்றுச் சூழல் திருத்தம் செய்ய ஏதுவானது என்றும் கருதுகிறார். மேலும் சூழ்வெளியைச் சுத்தமாக வைத்திருக்க, அணுசக்தி மின்சாரமே எதிர்காலத்தின் பொறித்துறைகளுக்கு ஏதுவாக இருக்கும் என்பதைத் தொழிற்துறை நிபுணர்கள் வலியுறுத்த வேண்டும் என்றும் கூறுகிறார். காற்றாடிகள், இயற்கை வாயு, சூரிய சக்தி, நீர்ச் சக்தி, நிலக்கரி, எருச்சாணி போன்ற வற்றால் உண்டாக்கும் மின்சார உற்பத்திச் செலவுகள், அணுமின் சக்திக்குப் பின்னால் நெருங்கிய தொகையுள்தான் உள்ளன. அணு மின்சக்தி பற்றிப் பொது மக்களுக்குப் போதிய பாதுகாப்பு விதிகளும், அணுசக்தி பரிமாற்ற உறுதிப்பாடு பற்றியும் படிப்பு & பயிற்சி அளிப்பது நிபுணரின் முக்கிய குறிக்கோள் பணியாக ஏற்றுக் கொள்ள வேண்டும்.

 பிளாக் & வியாட்சி  [அமெரிக்க மின்சக்தி தொழிற்துறை ஆளுநர்கள், Black & Veatch US Power Industry Leaders]

Japan Energy Resources

Fig Nuclear Share

“இயற்கை அபாய நிகழ்ச்சிகளுக்கு முக்கியத்தும் அளிக்காமல் நாங்கள் பயங்கரத் தொழிற்சாலைகளை அமைத்து விருத்தி செய்யப் போவ தில்லை.  சமீபத்தில் நேர்ந்த கோர விபத்துக்களில் ஏராளமான மனித உயிரிழப்புகள் நீரடிப்பால் நேர்ந்துள்ளன.  ஆதலால் புதிய அணுமின் நிலையங்களும் பெரிய எரிசக்தி ஆயில் சுத்திகரிப்புத் தொழிற் சாலைகளும் கடற்கரைத் தளங்களில் நிறுவகம் ஆவதற்கு முன்பு நாமெல்லாம் பத்து முறை ஆழ்ந்து சிந்தித்துப் பார்க்க வேண்டும்.”

நிக்கோலை லாவெராவ் (President, Russian Academy of Sciences)

“இந்த எதிர்பாராத துன்பமய நிகழ்ச்சி ஜப்பானில் எதிர்கால அணுமின் சக்தித் திட்டங்களைத் தவிர்க்கப் போவதில்லை.  புதிய அணுமின் சக்தி உற்பத்தித் திட்டங்கள் செம்மைப் படுத்தப் பட்டாலும் பெருமளவில் மாற்றம் அடையப் போவதில்லை.  இப்போதும் அணுமின் சக்தி ஆதரிப்பாளர் எண்ணிக்கை எதிர்ப்பாளர் எண்ணிக்கையை விட இரண்டரை மடங்கு (42% Versus 16%) மிகையாகவே உள்ளது.”

பேராசிரியர் அதனாஸ் தஸேவ் (Bulgarian Nuclear Forum, Energy Expert)   

World nuclear power sharing

Nuclear Fuel Processing

கேள்வி எழுப்பும் போது 45% தொழிற்துறை வல்லுநர் 2015 ஆண்டுக்குள் 20% மதிப்பளவில்தான் அணுமின் ஆற்றல் தேவையைப் பூர்த்தி செய்யும் என்பது தெரிகிறது. அவர்களின் எதிர்நோக்கு நீட்சி [Future Projections] அணுமின்சக்தியின் பங்கு, 2015 இல் 18% என்றும், 2030 இல் 21% இருக்கும் என்றும் தெளிவாகத் தெரிகிறது.  2050 இல் அணுமின் ஆற்றலில் தேவை 40% ஆக இரட்டிக்கும் என்றும் 50% அல்லது அதற்கும் மிஞ்சியும் போகலாம் என்றும் கருதுகிறார்.

[Black & Veatch, US Electric Power Utility Survey Results (2010)]   

“மனித இனத்துக்கு அணுமின்சக்தி மிகவும் தேவைப் படுகிறது என்பது என் தனிப்பட்ட கருத்து. அவை விருத்தி செய்யப்பட்டு மக்களுக்கு முழுமை யான பாதுகாப்பு அளிப்பவை என்று உறுதிப்பாடாக வேண்டும்.  அதாவது அணு உலைகள் யாவும் பூமிக்கடியில் நிறுவப்பட வேண்டும் என்பது என் கருத்து.  அகில நாடுகளின் அணுசக்திப் பேரவை (IAEA) தாமதமின்றி அணு உலைகள் எல்லாம் அடித்தளங்களில் நிறுவப்பட சட்டமியற்ற வேண்டும்.”

ஆன்டிரே ஸெக்காரோவ் [Andrei Sakharov, Russian Nobel Laureate (May 1989)]

World nuclear capacity

Fig World Nuclear Power Production

ரஷ்யாவில் எரிசக்தி ஆக்கமும், மின்சார உற்பத்தியும் அணுசக்திப் பொறித்துறைகள் இல்லாமல் தற்போது இயங்கப் போவதில்லை.

ரஷ்ய ஜனாதிபதி டிமிட்ரி மெட்வெதேவ் & பிரதம மந்திரி விலாடிமிர் புட்டின் கூட்டறிக்கை.

அணுமின்சக்தி நிலையங்களில் விபத்துக்கள் நேரும் என்று எதிர்பார்ப்பதிலும், அதனால் ஏற்படும் தீங்கு விளவுகளைக் குறைக்க வழிகள் உள்ளன என்னும் பாதுகாப்பு உறுதிலும் பொது மக்களின் உடன்பாடு காணப்பட வேண்டும்.  பாதுகாப்பாக எப்படி அணுமின் உலையில் நேரும் விபத்தின் தீவிர விளைவுகளோடு மனிதர் வாழ முடியும் என்பது ஒருபுறம் இருக்க, செர்நோபில் போன்ற கோர விபத்துகளை எப்படித் தடுக்க வேண்டும் என்பது முக்கியமான கேள்வியாக இன்னும் தெரிய வில்லை !

இயற்கை விஞ்ஞான இதழ்ப் பதிப்பு [Nature]

World nuclear power generation 2013

World Nuclear Resources

புகுஷிமா விபத்துக்குப் பிறகு அகில நாட்டு அணுமின் சக்தியின் நிகழ்கால & எதிர்கால நிலைப்பாடு.

இன்னும் குறைந்தது 35 – 50 ஆண்டுகளுக்கு உலக நாடுகள் அணுமின் சக்தியை அடிப்படைப்  பாரம் சுமக்கும் மின்சக்தியாய்ப் [Base Load Power] பயன்படுத்தும் என்று உலக அணுசக்திப் பேரவை [World Nuclear Association] நிபுணர்கள் கூறுகிறார்.  செர்நோபில், புகுஷிமா அணு உலை விபத்து களுக்குப் பிறகு பாதுகாப்புக் குறைபாடுள்ள அணுமின் நிலையங்கள் நிறுத்தமாகி, திருத்தமாகிச் செப்பணிடப் பட்டுள்ளன.  முதுமை அடைந்த பழைய மாடல் அணுமின் நிலையங்கள் நிறுத்தமாகி நிரந்தர ஓய்வு பெற்றுள்ளன.  ஜப்பானில் இயங்கும் அனைத்து [48] அணுமின் சக்தி நிலையங்களும் கடந்த 4 ஆண்டுகள் நிறுத்தமாகிச் பாதுகாப்பு முறைப்பாடுகள் சோதிக்கப்பட்டுச் செப்பணிடப் பட்டு வருகின்றன. அவற்றில் 23 அணுமின் நிலையங்கள் இப்போது இயங்கத் தயாராகி, முதல் அணுமின் உலை ஒன்று ஆகஸ்டு 11, 2015 இல் துவங்க ஆரம்பித்துள்ளது.

Reactor under operation

Nuclear Power in USA

2015 ஆண்டில் அகில நாட்டு அணுமின்சக்தி உற்பத்தி நிலவரம்

  1.  1996 ஆண்டு முதல் பெருகி வந்த அணுமின்சக்தி உற்பத்தி, உச்ச அளவு 2660 டெர்ரா-வாட் ஹவர் [Twh -terra-watt-hours] ஆக ஏறி, 2006 ஆண்டு முதல் குறைந்து வருகிறது.  2013 ஆண்டில் 2359 Twh ஆகக் குன்றியது.   குறைந்த அணுமின்சக்தியை ஈடுசெய்தவை குறிப்பாக நிலக்கரி, இயற்கை வாயு [Natural Gas] மூலம் உற்பத்தியான அனல் மின்சக்தி.  1996 ஆண்டில் 17.6% உலகப் பங்களிப்பாக அணுமின் சக்தி பயன்பட, 2015 ஆண்டில் 10.8% பங்களிப்பு அளவே நிரப்பி வருகிறது.
  2. பத்தாண்டுக்கு முன்பு [2005]  உலகின் 31 நாடுகளில் இயங்கி வந்த 438 அணுமின் உலைகளில் இன்று 390 எண்ணிக்கை அளவில்தான் இப்போது [2015 ஜனவரி 1] இயங்கி வருகின்றன.  காரணம் 2011 இல் புகுஷிமா அணுமின் உலைகள் விபத்துக்குப் பிறகு ஜப்பான் பாதுகாப்பு விதி/நெறி முறைகள் உறுதியாக தனது 48 அணுமின் உலைகளை உடனே நிறுத்தியது.  [438 -48 = 390].  ஜப்பானில் 2 அணுமின் நிலையங்கள் மட்டும் 2013 முதல் மின்சாரம் உற்பத்தி செய்து வருகின்றன.  ஜப்பான் இன்னும் 17 அணுமின் உலைகளின் பாதுகாப்பு ஏற்பாடுகளை உளவு செய்து வருகிறது.  அவற்றில் இரண்டடின் பாதுகாப்பு ஏற்பாடுகள் ஏற்றுக் கொள்ளப்பட்டு, இயங்க அனுமதி பெற்று 2015 ஆகஸ்டு 11 இல் முதல் யூனிட் துவங்கியுள்ளது.  இரண்டாவது யூனிட் ஓரிரு மாதங்களில் இயங்கத் துவங்கும்.
  3. ஜெர்மனி 2011 புகுஷிமா விபத்துக்குப் பிறகு 8 அணுமின்சக்தி நிலையங்களை நிறுத்தியது.  எஞ்சிய மற்ற 9 அணுமின் நிலையங்கள் 2015 – 2022 ஆண்டுகளில் படிப்படியாக நிறுத்தம் அடையும்.   இழப்பு மின்சாரத்தை ஈடுசெய்ய நிலக்கரி, அனல் மின்சாரம் பயன்படுத்தப் பட்டது.
  4. அமெரிக்கா 2012 முதல் பிளாரிடா, விஸ்கான்சின், வெர்மான்ட், மற்றும் கலிஃபோர்னியாவில் இயங்கிய பழைய, முதிய 7 அணுமின் நிலையங்களுக்கு ஓய்வு கொடுத்தது.   ஆயினும் எல்லா நாடுகளைக் காட்டிலும் அமெரிக்காதான் பேரளவு [19% பங்கு] அணுமின்சக்தி நிலையங்களைத் தற்போது இயக்கிக் கொண்டு வருகிறது.
  5. 2015 ஆண்டிலும் பிரான்ஸ் தனக்கு வேண்டிய மின்சாரத்தை 75% பங்கு அணுமின் நிலையங்களிலிருந்துதான் உற்பத்தி செய்து வருகிறது.
  6. இன்னும் பெல்ஜியம், ஸ்லோவாகியா, ஹங்கேரி போன்ற ஐரோப்பிய நாடுகள் 50% பங்கு மின்சாரத்தை அணுமின் உலைகள் மூலம்தான் உற்பத்தி செய்து வருகின்றன.

2014 Reactors under construction

கட்டுமான திட்டங்களில் உயிர்தெழும் புதிய அணுமின் நிலையங்கள்

  1. 2015 ஜனவரி முதல் தேதி நிலைப்படி இதுவரை உலக நாடுகளில் 65 புதிய அணுமின் நிலையங்கள் கட்டுமானமாகி வருகின்றன. புகுஷிமா விபத்துக்குப் பிறகு புதிய பாதுகாப்பு நெறி முறைகள் விதிக்கப்பட்டு 49 அணுமின் உலைகளின் கட்டுமான வேலைகள் தாமதமாகி வருகின்றன.  2015 டாலர் நிதி மதிப்பை ஒப்பிட்டால் அணுமின் நிலையக் கட்டுமானச் செலவுகள் மிக மிக அதிகமானவை. கட்டும் காலமும் நீண்டது.  கட்டுமானச் செலவுகள் கட்டு மீறிப் போவதைத் தடுப்பது கடினமாக உள்ளது.
  2. உலகில் 14 நாடுகள் 67 அணுமின் நிலையங்களைப் புதிதாய்க் கட்டப் போவதாக 2015 ஆண்டு அறிவிப்பு மூலம் தெரிய வருகிறது. அவற்றில் 80% ஆசிய நாடுகளிலும், ஐரோப்பாவிலும் அமைக்கப்பட உள்ளன.   சைனா ஒரு நாடுதான் 2018 ஆண்டுக்குள் 28 அணுமின் நிலையங்கள் உருவாக்கும் என்பது உறுதிப்படுகிறது.
  3. 2015 முதல் 2059 ஆண்டுவரை தேவைப்படும் மின்சார உற்பத்தியைப் பெருக்க 400 புதிய அணுமின் நிலையங்கள் கட்டப்பட வேண்டும். இயங்கி வரும் உலக அணுமின் நிலையத்தின் சராசரி  வயது நீடிப்பு சுமார் : 28.5 ஆண்டுகள்.  அவை 40 ஆண்டுகளைத் தொட்டால், நிறுத்தம் அடையும் நிலையை எட்டிவிடும்.  அவற்றின் ஆயுள் மேலும் நீடிக்கப்பட வேண்டுமானால் சுமார் ஒரு பில்லியன் டாலர் நிதித் தொகை புதுப்பிக்கத் தேவைப்படும்.  பொதுவாக அமெரிக்காவில் அணுமின் நிலைய ஆயுள் நீடிப்பு 40 ஆண்டு வரையறை அளவில் [Licensing Limit] அனுமதிக்கப் படுகிறது.  அமெரிக்காவில் உள்ள 100 அணுமின் நிலையங்களில் 72 குறிப்பாக 60 வருட ஆயுள் நீடிப்பு அளிக்கப் பட்டுள்ளன.

Fig 4 Individual Country Production

பின்புலம்:  2011 மார்ச்சு மாதம் 11 ஆம் தேதி ஜப்பான் கிழக்குப் பகுதியைத் தாக்கிய 9 ரிக்டர் அளவு அசுர நிலநடுக்கத்தில் கடல் நடுவே 50 அடி (14 மீடர்) உயரச் சுனாமி எழுந்து  நாடு, நகரம், வீடுகள், தொழிற் துறைகள் தகர்ந்ததோடு, புகுஷிமா அணுமின் உலைகளின் எரிக்கோல்கள் வெப்பத் தணிப்பு நீரின்றி, ஓரளவு சிதைந்து, ஹைடிரஜன் வாயு சேமிப்பாகி வெளியேறி மேற்தளக் கட்டங்கள் வெடித்தன.  அத்துடன் ஒன்று அல்லது இரண்டு அணு உலைக் கோட்டை அரணில் பிளவு ஏற்பட்டுக் கதிரியக்கப் பிளவுத் துணுக்குகள் (Radioactive Fission Products) சூழ்வெளியிலும், கடல் நீரிலும் கலந்தன.  அந்தப் பேரிழப்பால் பல்லாயிரம் பேர் உயிரிழந்தும் பிழைத்துக் கொண்டோர் வீடிழந்தும், தமது உடமை இழந்தும், சிலர் கதிரியக்கத்தாலும் தாக்கப்பட்டார்.  நான்கு  அணுமின் உலைகளில் பெருஞ் சேதம் ஏற்பட்டதால் ஜப்பான் நாட்டில் 2720 மெகா வாட் மின்சக்தி (MWe) உற்பத்தி குன்றி அண்டை நகரங்களில் பேரளவு மின்வெட்டுப் பாதிப்புகள் நேர்ந்துள்ளன.

World nuclear power capacity

தற்போது முப்பது உலக நாடுகளில் 430 அணுமின் நிலையங்கள் [அமெரிக்காவில் திரி மைல் தீவு, ரஷ்யாவில் செர்நோபிள் நிலையம், ஜப்பானில் புகுஷிமாவின் நான்கு அணுமின் உலைகள் ஆகிய வற்றைத் தவிர] பாதுகாப்பாக இயங்கி சுமார் 370,000 MWe (16%) ஆற்றலைப் பரிமாறி வருகின்றன.  மேலும் 56 நாடுகளில் 284 அணு ஆராய்ச்சி உலைகள் அமைப்பாகி ஆய்வுகள் நடத்தப் பட்டு வருகின்றன.  அணு மின்சக்தி நிலையங்கள் 1950 ஆண்டு முதல் தோன்றி மின்சாரம் அனுப்பத் துவங்கிய பிறகு தொடர்ந்த 60 ஆண்டுகளில் ஆறு பெரிய கதிரியக்க விபத்துகள் நிகழ்ந்துள்ளன.  அதாவது 2011 ஆண்டு மார்ச்சு வரை உலக அணு உலைகளில் சராசரி 10 ஆண்டுக்கு ஒருமுறை ஒரு பெரு விபத்து நேர்ந்தி ருக்கிறது !  ஜப்பான் புகிஷிமா அணு உலைகள் விபத்துக்குப் பிறகு எதிர்கால அணுமின்சக்திக்கு உலக நாடுகள் இன்னும் ஆதரவு அளிக்கின்றனவா அல்லது எதிர்ப்பு அறிவிக்கின்றனவா என்பதை விளக்கமாய் ஆராய்வதே இந்தக் கட்டுரையின் குறிக்கோள்.

புகுஷிமா அணு உலைகள் விபத்துக்குப் பிறகு அணுமின்சக்தி பாதுகாப்புப் பற்றி உலக நாடுகளின் தீர்ப்பு.

1.  1986 செர்நோபில் அணு உலை விபத்தில் பாடங்கள் கற்றக் கொண்ட ரஷ்ய அணுசக்தித் துறை வல்லுநர் சிலரின் அரிய கருத்துக்கள் கீழே எழுதப்பட்டுள்ளன.

World nuclear power countrywise

1.1  ரஷ்ய விஞ்ஞானக் கழகத்தின் அதிபர் நிக்கோலை லாவெராவ் (Nikolai Laverov President, Russian Academy of Sciences) கூறுகிறார் :

“இயற்கை அபாய நிகழ்ச்சிகளுக்கு முக்கியத்தும் அளிக்காமல் நாங்கள் பயங்கரத் தொழிற்சாலைகளை அமைத்து விருத்தி செய்யப் போவதில்லை.  சமீபத்தில் நேர்ந்த கோர விபத்துக்களில் ஏராளமான மனித உயிரிழப்புகள் நீரடிப்பால் நேர்ந்துள்ளன.  ஆதலால் புதிய அணுமின் நிலையங்களும் பெரிய எரிசக்தி ஆயில் சுத்திகரிப்புத் தொழிற் சாலைகளும் கடற்கரைத் தளங்களில் நிறுவகம் ஆவதற்கு முன்பு நாமெல்லாம் பத்து முறை ஆழ்ந்து சிந்தித்துப் பார்க்க வேண்டும்.  ஜப்பான் பூகம்ப விபத்தில் (2011 மார்ச்சு) பெரிய எரிஆயில் சுத்திகரிப்புத் தொழிற்சாலை எப்படி எரிந்தததென்று பார்த்தோம். ஜப்பானில் நிதிவள விரையத்தோடு சூழ்வெளி, கடல் நீர் தூய்மைக்குக் கேடு விளைந்ததையும் கண்டோம்.  நாம் அம்மாதிரி ஒரே தவறுகளை ஏன் மீண்டும் மீண்டும் செய்கிறோம் ?”

World nuclear power construction

1.2 விலாடிமிர் குபரேவ் (Vladimir Gubarev, Chernobyl Burial Drama Author) கூறுகிறார்

“விஞ்ஞானப் பொறியியல் நிபுணத்துவத்தில் முற்போக்கான ஜப்பானியர் எப்படி நான்கு அணுமின் உலைகளின் வெப்பத்தைக் கட்டுப்படுத்த முடியாமல் தடுமாறிப் போனார் என்று ரஷ்ய அணுசக்தித் துறையினர் குழம்பிப் போயுள்ளார்.  முடியாமைக்குக் காரணம் நிலநடுக்கம், சுனாமி ஆகிய இரு நிகழ்ச்சிகளின் கூட்டு விளைவு என்பது என் கருத்து.  எந்த அணுமின் சக்தித் திட்டமும் இந்த அசுர அளவு பூகம்பத்துக்கும் (ரிக்டர் : 9) 30 அடி உயரச் சுனாமி எதிர்பார்ப்புக்கும் டிசைன் செய்யப் படவில்லை.  அது முதல் பிரச்சனை.  இரண்டாவது செர்நோபில் விபத்தின் போது ரஷ்யாவில் தலைமை அரங்கை உடனே ஏற்படுத்தி அரசாங்க அமைச்சகங்கள் அத்தனையும் ஒத்துழைத்தன.  ஜப்பானில் அப்படிக் கூட்டுறவு நிகழவில்லை.  புகுஷிமா அணுமின் உலைகளின் உரிமையாளர் (Tokyo Electric Power Company -Tepco) ஒரு தனியார் நிறுவகம்.  டெப்கோ தனியாகப் பல்வேறு பாதுகாப்புப் பணிகளை உடனே செய்ய முடியவில்லை.  இதற்கு ஓர் உதாரணம் : புகுஷிமா தளத்தில் மின்சக்திப் பரிமாற்றம் அறுபட்ட பிறகு, உதவிக்கு அடுத்த தனியார் மின்சார வாரியத்திலிருந்து கொண்டு வர டெப்கோவுக்குப் பல நாட்கள் ஆயின !”


Japan Energy Sharing

1.3 செர்கி நோவிகோவ் (Sergei Novikov, Head of Communication at Rosatom) கூறுகிறார்

ரஷ்யாவின் ரோஸாட்டம் குழு (Rosatom Group) ஜப்பான் நாடு அழைத்தால் முடங்கிப் போன அணு உலைகளுக்கு உதவி செய்யத் தயாராய் இருந்தது.  எந்த எந்தத் துறைகளில் உதவி தேவை என்று ஜப்பான் கேட்டால் அந்தத் துறைகளில் உடனே உதவிட நாங்கள் எதிர்பார்த்திருந்தோம்.  (ஆனால் மெய்யாக அழைப்பு வரவில்லை).  ரஷ்ய ஜனாதிபதி டிமிட்ரி மெத்வெதேவ் (President Dimitri Medvedev) & பிரதம மந்திரி விலாடிமிர் புட்டின் (Prime Minister Vladimir Putin) இருவரும் (புகுஷிமா விபத்துக்குப் பின்) ஒருங்கே அழுத்தமாக இப்படி அறிவித்தார்:  ரஷ்யாவில் எரிசக்தியும் ஆக்கமும், மின்சார உற்பத்தியும் அணுசக்திப் பொறித்துறை இல்லாமல் தற்போது நிகழப் போவதில்லை..”

Fig 1A Energy Map of India

1.4 லியோனிட் போல்ஸோவ் (Director, Institute of Safe Development of Nuclear Power Industry) கூறுகிறார்

“இப்போது ரஷ்ய அணுமின் நிலையங்களைப் பொருத்த வரையில் பாதுகாப்பு நெறிப்பாடு விதிகள் முற்றிலும் வேறுபட்டவை.  ஜப்பான் புகுஷிமா அணுமின் நிலையங்களில் சில 40 வருடங்களுக்கு முன்பு கட்டப் பட்ட பழைய மாடல்கள் என்னும் குறைபாடு ஒருபுறம் இருக்கட்டும்.  அதற்குப் பிறகு சில மேம்பாடுகளை அவற்றில் ஜப்பானியர் செய்தனர் என்பது மெய்தான்.  அவற்றின் தகுதிப்பாட்டை நான் எடை போடப் போவதில்லை.  நவீன ரஷ்ய அணுமின் உலைகளைக் கட்டுவ தென்றால் தற்போதைய பாதுகாப்பு நெறிப்பாடு விதிகள் மிகக் கடுமையாக எழுதப் பட்டுள்ளன.  அணு உலை எரிகோல்கள் வெப்பத்தைத் தணித்துப் பாதுகாக்கப் பல்வேறு நீரனுப்பு முறைகளை நாங்கள் அமைத்திருக் கிறோம்.  எங்கள் நவீன AES-2006 மாடல் அணுமின் நிலையத்தில் தயார் முறைப்பாடு, ஓய்வு முறைப்பாடு (Active & Passive Emergency Coolant Systems) என்னும் இரட்டை அபாய நீரனுப்பு ஏற்பாடுகள் எரிக் கோல்களின் வெப்பத்தை உடனே தணிக்க அணு உலையின் கோட்டை அரணுக் குள்ளேயே இரட்டைக் குழாய்ப் பைப்போடு இணைக்கப் பட்டுள்ளன.  அத்தோடு வெப்பக் கோல்கள் உருகி விட்டால் தாங்கிக் கொள்ளும் கும்பாவும் (Fuel Rods Melt Trap) கீழே அமைப்பாகி உள்ளது.  மேலும் ஓய்வு வாயு வெப்பத் தணிப்பி, நீண்ட கால அணுப்பிளவுக் கதிரியக்கச் சுத்தீகரிப்பு ஏற்பாடு, ஹைடிரஜன் மீள் இணைப்பிகள் [(1) Passive Air Heat Exchanger, (2) Long Term Fission Product Filtering System,  (3) Hydrogen Recombiners)] போன்றவையும் அமைக்கப் பட்டுள்ளன.  செர்நோபில் விபத்துக்குப் பிறகு கடின முறையில் நாங்கள் கற்றுக் கொண்ட பாடங்கள் இவை யெல்லாம்.

Fig 1B Indian Reactors Operating & under Construction

1.5 பேராசிரியர் அதனாஸ் தஸேவ் (Bulgarian Nuclear Forum, Energy Expert) கூறுகிறார்

ஜப்பான் புகுஷிமா அணுமின் உலைகள் சில காலம் கடந்த பிற்போக்கு முறையில் கட்டப் பட்டிருந்தாலும் அவை 9 ரிக்டர் அசுர அளவு நிலநடுக்கத்தில் கூடப் பழுதாக வில்லை என்பது அழுத்தமாகக் குறிப்பிடத் தக்கது.  40 வருடங்கள் கடந்தும் டிசைன் முறைப்படி அவற்றில் பாதுகாப்பு இயக்கங்கள் சுயமாக நிகழ்ந்தன.  ஆனால் விபத்துக்கள் நேர்ந்ததற்குக் காரணங்கள் டிசைன் எல்லைக்கு அப்பாற் பட்டவை. 30 அடி (10 மீடர்) உயரச் சுனாமித் தாக்கல் இதுவரை எதிர்பாராது.  8 அடி (2.5 மீடர்) உயர அணையைத் தாண்டி அபாயப் பாதுகாப்புச் சாதனங்களைச் சுனாமிப் பேரலை அடிப்பு மூழ்க்கி விட்டு முடமாக்கியது.  எதிர்பாராத சுனாமியால் நேர்ந்த புகுஷிமா விபத்தால் உலக நாடுகளின் அணுசக்தி உற்பத்தித் திட்டங்கள் பாதிக்கப்பட வேண்டிய தில்லை.  ஆனால் ‘அவசியப் பன்முக அமைப்பு’ பற்றி ஒரு விதி (Law of Necessory Diversity) உள்ளது.  இது மர்·பி நியதி (Murphy’s Law) என்றும் அழைக்கப்படுகிறது.  அதாவது “சிந்தனைப்படி ஏதோ ஒரு தவறு நிகழலாம் என்று எதிர்பார்க்கப் பட்டால், நிச்சயம் அது நேர்ந்திடும்.”

இந்த எதிர்பாராத துன்பமய நிகழ்ச்சி ஜப்பானில் எதிர்கால அணுமின்சக்தித் திட்டங்களைத் தவிர்க்கப் போவதில்லை.  புதிய அணுமின் சக்தி உற்பத்தித் திட்டங்கள் செம்மைப் படுத்தப் பட்டாலும் பெருமளவில் மாற்றம் அடையப் போவதில்லை.  இப்போதும் அணுமின்சக்தி ஆதரிப்பாளர் எண்ணிக்கை எதிர்ப்பாளர் எண்ணிக்கையை விட இரண்டரை மடங்கு (42% Versus 16%) மிகையாகவே உள்ளது.

1.6  அலெக்ஸாண்டர் பைக்கோவ் (Deputy Director General IAEA) கூறுகிறார்

புகுஷிமாவின் நிறுத்தமான அணு உலைகளின் வெப்பக் கட்டுப்பாட்டை ஜப்பான் நிபுணர் பல நாட்கள் செய்ய முடியாது கதிரியக்கம் வெளியேறித் தீவிர விபத்தானது.  இறுதியாக ஜப்பானிய பொறியியல் வல்லுநர் வெப்பத்தைக் கட்டுப் படுத்த முடிந்தது.  எங்கள் கணிப்பின்படி அணு உலைகளில் ஓரளவு எரிக்கோல்கள் வெப்பத் தணிப்பு நீரின்றி சிதைவடைந்தன என்று கூறுகிறோம்.  ஆனால் அவை உஷ்ணம் மீறி அறிவிக்கப்பட்டது போல் உருகிப் போய்விட வில்லை (No Meltdown) என்பது எமது கருத்து.  அப்படி எரிக்கோல்கள் உருகிப் போயிருந்தால் உள்ளே பரவிய / வெளியே சூழ்ந்த கதிரியக்க வெளிவீச்சும் உக்கிரமும் பெரு மடங்காய் முற்றிலும் வேறுபட்டிருக்கும்.  அதாவது திரிமைல் தீவு விபத்து போல் எரிக்கோல்கள் புகுஷிமாவில் உருகிப் போகவில்லை !  ஹங்கேரியன் பாக்ஸ் அணுமின்சக்தி நிலைய விபத்து போல் (Hungarian Paks Atomic Power Plant Accident – Level 3) எரிக்கோல்களில் சிதைவுகள் நேர்ந்துள்ளன.

(தொடரும்)

***************

தகவல்:

1. IAEA Team to Report on Kashiwazaki Kariwa Nuclear Power Plant Examination (Aug 16, 2007)

2. Japan Earthquake Triggers Nuclear Plant (Transformaer) Fire

3. Earthquake Spills Radioactive Water at Japanese Nuclear Plant (July 17, 2007)

4 Nuclear Waste (Water) Leak Fear after Japan Quake By: Justin McCurry (July 18, 2007) Tokyo

5. Japan Earthquake Caused Nuclear Waste (Water) Spill

6. Japanese Earthquake Sparks Nuclear Plant (Transformer) Fire By: AP (July 16, 2007)

7. Japan Nuclear Power Plants and Earthquakes (August 2007)

8. Herald Tribune : Earthquake Stokes Fears Over Nuclear Safety in Japan By Martin Facker (July 24, 2007)

9. Earthquake Zone : Earthquakes & Nuclear Safety in Japan [Citizen Nuclear Information Center (CNIC)] By Philip White International Liaison Officer CNIC.

10. Four Categories of Buildings & Equipment for Earhtquake-resitant Design of Nuclear Power Plants

11. Safety of Nuclear Power Reactors, [www.uic.com.au/nip14.htm] (July 2007)

12. Nuclear Power Plants & Earthquakes [www.uic.com.au/nip20.htm] (Aug 2007)

13.  IAEA Issues Report on Kashiwasaki-Kariwa Nuclear Plant   (August 17, 2007)

14.  Third IAEA Report on Kasiwasaki-Kariwa Nuclear Plant  (Jan 29, 2009)

15.  Efforts toward Enhansing Scismic Safety at Kasiwasaki-Kariwa Nuclear Power Station  (Nov 14, 2009)

16.  Backgrounder on Earthquakes & Nuclear Power in Japan   (March 11, 2011)

17. Japan Nuclear Industry is in Meltdown [Sep 28, 2002]

18. Monju Fast Breeder Startup (Feb 10, 2010)

19.  Nuclear {Power in Japan (March 30, 2011)

20. Russia & India Report –  Lessons of Fukushima – Expert Opinions.  (March 28, 2011)

20 (a)  Macleans Magazine – Japan Fearing the Fallout  (March 28, 2011)

21. Monju Fast Breeder Restarts after 14 years of Suspension  (May 12, 2010)

22.  Fukushima & Chernobyl Compared (April 11, 2011)

23.  World Nuclear Association Report – Nuclear Power in Japan & Nuclear Safety and Seurity in the wake of Fukushima Accident (Updated in April 2011)

24. Fukushima : What Happened and What Needs to be done ? (April 10, 2011)

25. Japan Fukushima Damaged Nuclear Reactors’ Status (April 13, 2011)

26. Setbacks at Japan (Fukushima) Nuclear Plants (May 12, 2011)

27. World Nuclear Association Report : Fukushima Accident 2011 (May 30, 2011)

28. World Nuclear Association Report : Policy Responses to the Fukushima Accident. (May 31, 2011)

29 Wikipedea Report : http://en.wikipedia.org/wiki/Paks_Nuclear_Power_Plant(Hungarian Paks Atomic Plant Loss of Coolant Accident) (May 27, 2011)

30. Wikipedea Report :  List of Civilian Nuclear Accidents (June 4, 2011)

31. http://www.bbc.com/news/world-asia-33858350 [August 11, 2015]

32. http://www.vox.com/2015/8/12/9143265/japan-nuclear-restart-fukushima  [August 12, 2015]

33.  http://www.world-nuclear-news.org/NP-US_power_industry_sees_nuclear_future-1802104.html  [February 18, 2010]

34.  http://www.mining.com/75-of-future-nuclear-power-expansion-will-occur-in-china-russia-and-india/  [September 26, 2011]

35.   http://www.mining.com/fukushima-was-a-blip-uranium-fundamentals-stronger-than-ever/  [January 29, 2012]

35.  http://www.vox.com/2014/8/1/5958943/nuclear-power-rise-fall-six-charts [January 30, 2015]

36.  http://fukushimaupdate.com/japan-ends-nuclear-shutdown-four-years-after-fukushima/  [August 11, 2015]

37.  http://www.world-nuclear.org/  [2015]

38.  https://en.wikipedia.org/wiki/World_Nuclear_Association  [July 30, 2015]

39.  http://www.euronuclear.org/info/encyclopedia/n/nuclear-power-plant-world-wide.htm [June 1, 2015]

40.  https://en.wikipedia.org/wiki/World_Association_of_Nuclear_Operators [April 3, 2015]

41.  https://en.wikipedia.org/wiki/Nuclear_power  [August 28, 2015]

42. https://news.sky.com/story/fukushima-worker-dies-of-cancer-caused-by-radiation-seven-years-after-disaster-11491282  [September 6, 2018]

43. https://www.nytimes.com/2018/09/05/world/asia/japan-fukushima-radiation-cancer-death.html  [September 5, 2018]

44. https://www.theguardian.com/world/2018/sep/05/japan-admits-that-fukushima-worker-died-from-radiation  [September 5, 2018

45. https://en.wikipedia.org/wiki/Fukushima_Daiichi_nuclear_disaster_casualties [Sptember 6, 2018]

************************

S. Jayabarathan  (jayabarathans@gmail.com)  September 30, 2018 [R-1]
http:jayabarathan.wordpress.com/

இந்தியாவின் முதல் தமிழ்ப்பெண் விஞ்ஞானி

Featured

சி. ஜெயபாரதன் B.E.(Hons) P.Eng (Nuclear) கனடா

 

கருந்துளை ஒரு சேமிப்புக்
களஞ்சியம் !
விண்மீன் தோன்றலாம் !
ஒளிமந்தைகள் பின்னிக் கொள்ளலாம் !
இருளுக்குள் உறங்கும்
பெருங் கருந்துளையை எழுப்பாது
உருவத்தை மதிப்பிட்டார் !
உச்சப் பெருங் கருந்துளைக்கு
வயிறு பெருத்த விதம்
தெரிந்து போயிற்று !
பிரியாவின் அடிக் கோலால்
பெரிய கருந்துளையின்
உருவத்தைக் கணிக்க முடிந்தது !
விண்மீன்களை விழுங்கியும்
கும்பி நிரம்பாது
பிண்டங்களைத் தின்று
குண்டான உடம்பை
நிறுத்தும் உச்ச வரம்பு !
“பிரியா வரம்பு”
இயற்கைப் படைப்புகளின்
கைத்திறம் காண்பது
மெய்த்திறம் ஆய்வது,
வையகத்தின் மகத்துவம் !

+++++++++

Limit to the Largest Blackhole

 

“பிரபஞ்சத்தில் மிகப் பெரும் காலாக்ஸிக் கொத்துக்களின் (Galaxy Clusters) நீள்வட்ட காலாக்ஸிகளில் பூதப் பெரு வடிவுக் கருந்துளைகள் குடியிருக்கும் ! நமது பால்வீதி காலாக்ஸியின் நடுவே உள்ள கருந்துளை பூதப் பெரு கருந்துளையை விட ஆயிரக் கணக்கான மடங்கு சிறியது என்று கணிக்கப்படுகிறது ! அசுரப் பெரும் கருந்துளைகள் அண்டையில் இருக்கும் பிண்டங்களை விழுங்கி உச்ச நிறைக்கு மீறி வளராமல் நிறுத்தம் அடைகின்றன. சந்திரா எக்ஸ்-ரே விண்ணோக்கியைப் பயன்படுத்தி நிறுத்தமான கருந்துளைகளைக் காண முடிகிறது. உச்ச நிறை அடைந்த கருந்துளைகள் இப்போது வயிறு நிரம்பி நிற்கவில்லை ! பிரபஞ்சத் தோற்றத்தின் ஆரம்ப காலத்திலே அவற்றின் நிறை உச்ச வரம்பு நிலை அடைந்து விட்டது,”

“கருந்துளைகளே மெய்யாகப் பிரபஞ்ச இசை அரங்கின் பிரதானக் கொடைக் களஞ்சியம், (Black Holes are the really Prima Donnas of this Space Opera).”

டாக்டர் பிரியா நடராஜன் (Professor, Dept of Astronomy & Physics, Yale University, Connecticut, USA)

“என்னுடைய ஆய்வுக் கட்டுரைக்கு (Thesis) பிரபஞ்சத்தில் கருமைப் பிண்டம், கருந்துளைகள் தோற்றம், வளர்ச்சி ஆகிய பல்வேறு பிரச்சனை ஆராய்ச்சிகளில் ஈடுபட்டேன். ஸ்டீஃபென் ஹாக்கிங் பிரபஞ்சத்தின் புனைவு (Episode) ஒன்றில் கருமைப் பிண்டத்தின் உள் மணல் பற்றியும் (Granularity of Dark Matter) நான் ஆராய்ச்சி செய்தேன்.”

டாக்டர் பிரியா நடராஜன்

“சமீபத்திய ஹப்பிள் தொலைநோக்கியின் கண்டுபிடிப்புகள் வானியல் விஞ்ஞானிகளுக்கு மாபெரும் பிரபஞ்சச் சவாலாகி விட்டன ! காரணம் அது ஒவ்வொரு காலாக்ஸியின் மையத்திலும் பூதகரமான கருந்துளை ஒன்று இருப்பதைத் திறந்து காட்டி விட்டது !”

ஸ்டீவ் நாடிஸ், (Astronomy Science Editor)

“புதிய பொறிநுணுக்க முறை “விளைவுத் தொடுவானைத்” (Event Horizon) தெளிவாகக் காட்டுகிறது. அதுவே கருந்துளை இருப்பை நேரிடைச் சான்றாக நிரூபிக்கிறது.”

ஸ்டீவ் நாடிஸ், (Astronomy Science Editor)

“கருந்துளைகள் மெய்யாகக் கருமை நிறம் கொண்டவை அல்ல ! அவை ஒளித்துகள் மினுக்கும் கனல் கதிர்களை (Quantum Glow of Thermal Radiation) வீசுபவை.

ஸ்டீஃபென் ஹாக்கிங் (1970)

பிரபஞ்சத்திலே கண்ணில் புலப்படாத கருந்துளைகள் அகிலத்தின் மர்மமான விசித்திரங்கள் ! அந்தக் கருந்துளைகள்தான் பிரபஞ்சத்தின் உப்பிய வடிவில் 90% பொருளாக நிரம்பியுள்ளன ! எளிதாகச் சொன்னால், ஒரு சுயவொளி விண்மீன் எரிசக்தி முழுவதும் தீர்ந்து போய் எஞ்சிய திணிவுப் பெருக்கால் எழும் பேரளவு ஈர்ப்பாற்றலில் அடர்த்தியாகி “ஒற்றை முடத்துவ” (Singularity) நிலை அடைவதுதான் கருந்துளை. அந்தச் சமயத்தில் கருந்துளையின் அழுத்தம், திணிவு கணக்கற்று முடிவில்லாமல் மிகுந்து விடுகிறது. (At the point of Singularity, the Pressure & Density of a Black Hole are Infinite) !

விண்வெளி விடைக் கைநூல் (The Handy Space Answer Book)

பேருருவக் கருந்துளைக்குப் பிரியாவின் உச்ச நிறை வரம்பு

விண்வெளியில் கருந்துளைகள் கண்களுக்குத் தெரியாமல் போயினும் அவற்றின் வடிவை விஞ்ஞானிகள் மறைமுகமாக மதிப்பீடு செய்ய முடிகிறது ! அணுவைப் போல் சிறிதாகவும் கருந்துளைகள் இருக்கலாம் ! அசுர வடிவத்திலே பல கோடிப் பரிதிகளின் நிறையிலே கருந்துளைகள் குடியிருக்கலாம் ! அப்படி அவற்றின் நிறைகள் குறைவதற்கும், கூடுவதற்கும் தூண்டுகோலானக் காரணங்கள் என்ன ? நிறைகள் கூடி வயிறு பெருத்துக் கருந்துளைகள் பெரிதாகிப் பெரிதாகி வரையறை யின்றி பூத வடிவம் பெறுகின்றனவா ? அல்லது அவை ஓரளவுக்கு மேல் மீறாமால் நிலைத்துவம் அடைந்து உச்ச வரம்புடன் நின்று விடுகிறதா என்று ஆராய்ச்சி செய்த இந்தியப் பெண் விஞ்ஞானி டாக்டர் பிரியம்வதா நடராஜன். பேருருவக் கருந்துளைகளின் நிறைக்கு முதன்முதல் “உச்ச நிறை வரம்பை” (Mass Limit of Black holes) 2008 செப்டம்பரில் உலகுக்கு எடுத்துக் கூறியவர் பிரியா நடராஜன். அவ்விதம் பெரும் பூதக் கருந்துளைக்கு அவர் கூறிய உச்ச வரம்பு நிறை பரிதியைப் போல் 10 பில்லியன் மடங்கு ! அதற்குத் தமிழ் விஞ்ஞானத்தில் நாம் “பிரியாவின் வரம்பு” (Priya’s Limit) என்று பெயர் வைப்போம்.

பல ஆண்டுகளாக விஞ்ஞானிகளிக்கு ஓர் விண்வெளி ஆராய்ச்சிச் சவாலாகப் பிரபஞ்சத்தின் தீராத பெரும் புதிராகக் கருந்துளைகள் இருந்து வருகின்றன ! பல வல்லுநர்கள் இராப் பகலாக கருந்துளையின் இரகசியத்தை உளவு செய்து வருகிறார். அந்த ஆய்வு முயற்சிகளில் யேல் பல்கலைக் கழகத்தின் வானியல் பௌதிக பெண் விஞ்ஞானி பிரியா நடராஜன் ஓர் அரிய கருத்தைச் சமீபத்தில் வெளியிட்டிருக்கிறார். அதாவது வளரும் எந்தக் கருந்துளைக்கும் ஓர் உச்ச வரம்பு நிறை உள்ளது என்பதே ! பிரியாவின் அந்த அரிய அறிவிப்பு ராயல் வானியல் குழுவினரின் (Royal Astronomical Society) மாத இதழிலும் வெளிவந்துள்ளது !

பிரபஞ்சக் கருந்துளை என்பது என்ன ?

1916 ஆம் ஆண்டில் ஐன்ஸ்டைனின் ஒப்பியல் நியதியின் அடிப்படையில் ஜெர்மன் வானியல் விஞ்ஞானி கார்ல் சுவார்ஸ்சைல்டு (Karl Schwarzschild), பிரபஞ்சத்தில் முதன்முதல் கருந்துளைகள் இருப்பதாக ஓரரிய விளக்கவுரையை அறிவித்தார். ஆனால் கருந்துளைகளைப் பற்றிய கொள்கை, அவருக்கும் முன்னால் 1780 ஆண்டுகளில் ஜான் மிச்செல், பியர் சைமன் லாப்பிளாஸ் (John Michell & Pierre Simon Laplace) ஆகியோர் இருவரும் அசுர ஈர்ப்பாற்றல் கொண்ட “கரும் விண்மீன்கள்” (Dark Stars) இருப்பதை எடுத்துரைத்தார்கள். அவற்றின் கவர்ச்சிப் பேராற்றலிலிருந்து ஒளி கூடத் தப்பிச் செல்ல முடியாது என்றும் கண்டறிந்தார்கள் ! ஆயினும் கண்ணுக்குப் புலப்படாத கருந்துளைகள் மெய்யாக உள்ளன என்பதை விஞ்ஞானிகள் ஏற்றுக் கொள்ள நூற்றிமுப்பது ஆண்டுகள் கடந்தன !

1970-1980 ஆண்டுகளில் பேராற்றல் படைத்த தொலைநோக்கிகள் மூலமாக வானியல் விஞ்ஞானிகள் நூற்றுக் கணக்கான காலாக்ஸிகளை நோக்கியதில், கருந்துளைகள் நிச்சயம் இருக்க வேண்டும் என்னும் கருத்து உறுதியானது. கருந்துளை என்பது ஒரு காலவெளி அரங்கில் திரண்ட ஓர் திணிவான ஈர்ப்பாற்றல் தளம் (A Black Hole is a Region of Space-time affected by such a Dense Gravitational Field that nothing, not even Light, can escape it). பூமியின் விடுதலை வேகம் விநாடிக்கு 7 மைல் (11 கி.மீ./விநாடி). அதாவது ஓர் ஏவுகணை விநாடிக்கு 7 மைல் வீதத்தில் கிளம்பினால், அது புவியீர்ப்பை மீறி விண்வெளியில் ஏறிவிடும்.. அதுபோல் கருந்துளைக்கு விடுதலை வேகம் : ஒளிவேகம் (186000 மைல்/விநாடி). ஆனால் ஒளிவேகத்துக்கு மிஞ்சிய வேகம் அகிலவெளியில் இல்லை யென்று ஐன்ஸ்டைனின் நியதி எடுத்துக் கூறுகிறது. அதாவது அருகில் ஒளிக்கு ஒட்டிய வேகத்திலும் வரும் அண்டத்தையோ, விண்மீன்களையோ கருந்துளைகள் கவ்வி இழுத்துக் கொண்டு விழுங்கிவிடும்.

எத்துணை அளவு நிறை வரைப் பெருக்கும் கருந்துளைகள் ?

அணு வடிவில் சிறிதாயும் பூத உருவத்தில் பெரிதாகவும் பெருத்து வளர்பவை கருந்துளைகள் ! சிறு நிறைக் கருந்துளை, பெருநிறைக் கருந்துளை என்று பிரிவு பட்டாலும் இரண்டுக்கும் இடைப்பட்ட நிறையில் உள்ள கருந்துளைகளும் விண்வெளியில் கருவிகள் மூலமாகக் காணப்படலாம் ! பொதுவாகக் கருந்துளைகள் அருகில் அகப்படும் வாயுக்கள், தூசித் துகள்கள், ஒளிவீசும் விண்மீன்கள், ஒளியிழந்த செத்த விண்மீன்கள் போன்றவற்றை அசுர ஈர்ப்பாற்றலில் இழுத்து விழுங்கி வயிறு புடைத்துப் பெருக்கும் ! அப்போது கருந்துளையின் நிறை ஏறிக் கொண்டே போகிறது ! ஆனால் அந்த நிறைப் பெருக்கத்துக்கும் ஓர் எல்லை உள்ளது என்று பிரியா நடராஜன் முத்திரை அடிக்கிறார். எந்தப் பீடத்தில் இருந்தாலும் இட அமைப்பு கருந்துளை நிறையின் உச்ச அளவு வரம்பை மீற விடாது என்று அழுத்தமாகக் கூறுகிறார். பெரும் பூத வடிவுக் கருந்துளையின் (Ultra-massive Black Hole) நிறை மதிப்பு பரிதியைப் போல் ஒரு பில்லியன் மடங்காக அறியப் படுகிறது !

பிரியா நடராஜனும் அவரது விஞ்ஞானக் கூட்டாளர் டாக்டர் எஸிகுயில் டிரைஸ்டர் (Dr. Ezequiel Treister, A Chandra/Einstein Post-Doctoral Fellow at the Institute for Astronomy Hawaii) அவர்களும் விண்வெளி நோக்ககச் (Space Observatory) சான்றுகளிலிருந்தும், கோட்பாடுத் தர்க்கங்கள் மூலமாகவும் கருந்துளை உச்ச நிறை வரம்பு 10 பில்லியன் பரிதி அளவு என்று மதிப்பீடு செய்திருக்கிறார். “சந்திரா எக்ஸ்-ரே விண்ணோக்கியைப் பயன்படுத்திப் பெருக்காமல் நிறுத்தமான கருந்துளைகளைக் காண முடிகிறது. பிரபஞ்சத்தில் மிகப் பெரும் காலாக்ஸிக் கொத்துக்களின் (Galaxy Clusters) நீள்வட்ட காலாக்ஸிகளில் அத்தகைய வயிறு புடைத்த பூதப் பெரு வடிவுக் கருந்துளைகள் குடியிருக்கும் என்று பிரியா கூறுகிறார் ! நமது பால்வீதி காலாக்ஸியின் நடுவே உள்ள கருந்துளை பூதப் பெரு கருந்துளையை விட ஆயிரக் கணக்கான மடங்கு சிறியது என்று கணிக்கப் படுகிறது ! உச்ச நிறை பெற்ற கருந்துளைகள் இப்போது வயிறு நிரம்பியவை அல்ல ! பிரபஞ்சத் தோற்றத்தின் காலத்திலே அவற்றின் நிறை உச்ச நிலை அடைந்து விட்டது,” என்று கூறுகிறார் பிரியா.

huge-black-hole

கருந்துளை வளர்ச்சி எப்படி நிறுத்தம் அடைகிறது ?

“அருகில் அகப்படும் அண்ட பிண்டங்களை விழுங்கும் கருந்துளை, தான் புறவெளியில் உறிஞ்சிய கதிர்ச்சக்திக்குச் சமமான அளவுக்குக் கதிர்ச்சக்தியை வெளியேற்றும் போது மேலும் வாயுப் பிண்டத்தை இழுக்க வலுவற்று, வயிறு நிரம்பித் தடைப்பட்டு ஓர் வரையறையைத் தொடுகிறது. இந்தக் கண்டுபிடிப்பு மகத்தானது ! ஏனெனில் காலாக்ஸி மையத்தில் இருக்கும் கருந்துளை பிண்டங்களின் ஒரு சேமிப்புக் களஞ்சியமாய் வீற்றிருந்து விண்மீன் பிறப்புக்கும் காலாக்ஸி அமைப்புக்கும் வழிவகுக்கிறது,” என்று சொல்கிறார் பிரியா. “கருந்துளைகளே மெய்யாகப் பிரபஞ்ச இசை அரங்கின் பிரதானக் கொடைக் களஞ்சியம், (Black Holes are the really Prima Donnas of this Space Opera). பல்வேறு துறை ஆராய்ச்சிகளில் ஈடுபட்டிருந்த போது, நான் எதிர்பாராத விதமாய்க் கண்டுபிடித்த இந்த அரிய நிகழ்ச்சி எனக்குப் பூரிப்பளிக்கிறது” என்று சொல்கிறார் பிரியா.

விண்மீன் பிறப்புக்கும், கருந்துளை வளர்ச்சிக்கும் அண்டவெளி வாயுப் பிண்டங்கள் தேவை. கருந்துளைகள் இரண்டு விதம். ஒன்று பசியின்றி உயிருடன் இருக்கும் வயிறு நிரம்பியது ! இரண்டாவது பசியோடு முடங்கிய குறை வயிறுப் பட்டினியானது ! அவை யாவுமே எக்ஸ்-ரே கதிர்கள் வீசுபவை ! கண்ணோக்கு அலைப் பட்டையில் சுடரொளிக் குவஸாராகக் காணப்படுபவை (Optical Wave Band as a Bright Quasar) ! இதில் விந்தையான கோட்பாடு என்ன வென்றால் கருந்துளைகள் யாவும் “சுய வளர்ச்சி பெறும் அண்டங்கள்” (Self Regulating Growth Objects) என்பதே ! அதாவது உச்ச நிறை வரம்பு எய்திடும் ஒரு சில பூதப் பெரும் கருந்துளைகள் உள்ளன என்பதே இப்போது மகத்தானதோர் கண்டுபிடிப்பு,” என்று பெருமைப் படுகிறார் பிரியா நடராஜன் !

பெண் விஞ்ஞானி பிரியாவின் வாழ்க்கை வரலாறு

பிரியம்வதா என்னும் பிரியா ஓர் வானியல் பௌதிக விஞ்ஞானி. அவர் டெல்லியில் பிறந்து டெல்லியில் வளர்ந்தவர். அவரது தந்தையார் வெங்கடேச நடராஜன் ஓர் எஞ்சினியர். தாயார் லலிதா நடராஜன் ஒரு சமூகவியல் பட்டதாரி. இரு சகோதரருடன் பிறந்த பிரியா எல்லாருக்கும் மூத்தவர். டெல்லியில் பௌதிகத்தில் கீழ்நிலை விஞ்ஞானப் பட்டதாரியாகிப் பௌதிகம், கணிதத் துறைகளை மேலாக விரும்பி மேற்படிப்புக்கு M.I.T (Massachusetts Institute of Technology, Cambridge, Mass, USA) ஆராய்ச்சிப் பல்கலைக் கழகத்துக்கு வந்து சேர்ந்தார். பிறகு கோட்பாடு வானியல் பௌதிகத்தில் (Ph.D. in Theoretical Astrophysics) டாக்டர் வெகுமதி பெற இங்கிலாந்து கேம்பிரிட்ஜ் பல்கலைக் கழகத்திலும், டிரினிடி கல்லூரியிலும் (1997 முதல் 2003 வரை) பெரும் புகழ்பெற்ற விஞ்ஞானி டாக்டர் ஸர் மார்டின் ரீஸ் (Dr. Martin Rees) மேற்பார்வையில் பயின்றார்.

வானியல் பௌதிக விஞ்ஞானியான பிரியாவுக்கு விருப்பப் பிரிவுகள் : பிரபஞ்சவியல், ஈர்ப்பாற்றல் ஒளிக்குவிப்பு, கருந்துளைப் பௌதிகம் (Cosmology, Gravitational Lensing & Black Hole Physics). “என்னுடைய ஆய்வுக் கட்டுரைக்கு (Thesis) பிரபஞ்சத்தில் கருமைப் பிண்டம், கருந்துளைகள் தோற்றம், வளர்ச்சி ஆகிய பல்வேறு பிரச்சனைகளில் ஆழ்ந்து ஈடுபட்டேன். ஸ்டீஃபென் ஹாக்கிங் பிரபஞ்சத்தின் புனைவு (Episode) ஒன்றில் கருமைப் பிண்டத்தின் உள்மணல் (Granularity of Dark Matter) பற்றி நான் ஆராய்ச்சி செய்தேன்.” என்று பிரியா நடராஜன் கூறுகிறார். Ph.D. ஆய்வுப் பயிற்சி முடிவதற்குள் டிரினிடி கல்லூரி ஐஸக் நியூட்டன் ஸ்டூடன்ஷிப் ஆராய்ச்சி -வானியல் பௌதிக ஃபெல்லோஷிப்பில் பங்கெடுத்து முதல் இந்தியப் பெண் ·பெல்லோஷிப் ஆய்வாராளாகத் தேர்ச்சி பெற்றார்.

இப்போது யேல் பல்கலைக் கழகத்தின் வானியல் பௌதிகப் பேராசிரியராகப் பணியாற்றி வருகிறார். அங்கு வருவதற்கு முன்பு டொரான்டோ கனடாவில் (Canadian Institute for Theoretical Astrophysics, Toronto) சில மாதங்கள் டாக்டர் முன்னோடிப் பயிற்சிக்கு விஜயம் (Postdoctoral Fellow Visits) செய்தார். ஓராண்டு யேல் பல்கலைக் கழக விடுமுறை எடுத்து 2008-2009 தவணை ஆண்டுப் பங்கெடுப்பில் ஹார்வேர்டு ராட்கிளி·ப் மேம்பாட்டுக் கல்விக் கூடத்தில் (Radcliffe Institute for Advanced Study at Harvard) ஓர் ஆராய்ச்சி ஃபெல்லோஷிப்பில் ஈடுபட்டுள்ளார். மேலும் பிரியா “கருமை அகிலவியல் மையத்தின்” இணைப்பாளராய் டென்மார்க் நீல்ஸ் போஹ்ர் கருமை அகிலவியல் மையத்தில் (Associate of the Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark) இருந்து வருகிறார்.

பிரியா நடராஜன் தனது வானியல் பௌதிகத் துறை ஆய்வுகளை ஆராய்ச்சி இதழ்களில் அடிக்கடி எழுதியும், மேடைகளில் உரையாற்றியும், கருத்தருங்குகளை ஏற்படுத்தி விவாதித்தும் பங்கெடுத்து வருகிறார். 2008 அக்டோபர் 25 ஆம் தேதி விஞ்ஞான வெளியீட்டில் (Science News) அசுரப் பெருநிறை கருந்துளைகள் (Ultra-massive Black Holes) பற்றிய ஓர் ஆய்வுக் கட்டுரை அட்டைக் கட்டுரையாய் வரப் போகிறது. அவற்றின் அரிய உட்கருத்துக்கள் மேலும் ஏற்கனவே டிஸ்கவர் இதழ், இயற்கை, வெளிநாட்டு இந்தியா வார இதழ், ஹானலூலூ டைம்ஸ், டச் பாப்புளர் சையன்ஸ், ஹார்டேர்டு காஸெட், யேல் தினத் தகவல் (Discover Magazine, Nature, India Abroad, Honolulu Times, Dutch Popular Science, Harvard Gezette, Yale Daily News) ஆகியவற்றிலும் வந்துள்ளன.

விஞ்ஞானப் பெண்மணி பிரியம்வதா நடராஜன் நோபெல் பரிசு பெற்ற ஸர் சி.வி. இராமன், சுப்ரமணியன் சந்திரசேகர், கணித மேதை இராமானுஜன் போன்ற இந்திய விஞ்ஞான மேதைகளின் வரிசையில் ஓர் உன்னத ஆராய்ச்சியாளாராய் அடியெடுத்து வைக்கிறார். நோபெல் பரிசு பெற்ற பெண் விஞ்ஞானிகளான மேரி கியூரி, புதல்வி ஐரீன் கியூரி, (Marie Curie, Irene Curie) அணுப்பிளவை விளக்கிய லிஸ் மெய்ட்னர் (Lise Meitner) ஆகியோர் அணியில் பிரியா தடம் வைக்கிறார். அவர் முதன்முதல் கண்டுபிடித்து உலக விஞ்ஞானிகளுக்கு அறிவித்த “கருந்துளைப் பெருநிறை வரம்பு” உலக அரங்கில் பிரமிப்பை உண்டாக்கி உள்ளது ! “இராமன் விளைவு” (Raman Effect), “சந்திரசேகர் வரையறை” (Chandrasekhar Limit) போன்று “பிரியா வரம்பும்” (Black Hole Ultra-Mass Limit) விஞ்ஞான வரலாற்றில் சுடரொளி வீசும் மைல் கல்லாக விளங்கப் போகிறது. ஒளிமயமான எதிர்காலத்தில் பிரியாவுக்கு வெகுமதியாக வானியல் பௌதிக விஞ்ஞானத்துக்கு நோபெல் பரிசும் கிடைக்கவும் பெரியதோர் வாய்ப்புள்ளது.

++++++++++++++++++++++++++

தகவல்:

Picture Credits: NASA, JPL; National Geographic; Time Magazine, Discovery, Scientific American & Astronomy Magazines.

1. Our Universe – National Geographic Picture Atlas By: Roy A. Gallant (1986)
2. 50 Greatest Mysteries of the Universe – What Happens When Black Holes Collide ? (Aug 21, 2007)
3. Astronomy Facts File Dictionary (1986)
4. The Practical Astronomer By Brian Jones & Stephen Edberg (1990)
5. Sky & Telescope – Why Did Venus Lose Water ? [April 2008]
6. Cosmos By Carl Sagan (1980)
7. Dictionary of Science – Webster’s New world [1998]
8. The Universe Story By : Brian Swimme & Thomas Berry (1992)
9. Atlas of the Skies – An Astronomy Reference Book (2005)
10 Hyperspace By : Michio kaku (1994)
11 Universe Sixth Edition By: Roger Freedman & William Kaufmann III (2002)
12 Physics for the Rest of Us By : Roger Jones (1992)
13 National Geographic – Frontiers of Scince – The Family of the Sun (1982)
14 National Geographic – Living with a Stormy Star – The Sun (July 2004)
15 The World Book of Atlas : Anatomy of Earth & Atmosphere (1984)
16 Earth Science & Environment By : Dr. Graham Thompson & Dr. Jonathan Turk (1993)
17 The Geographical Atlas of the World, University of London (1993).
18 Hutchinson Encyclopedia of Earth Edited By : Peter Smith (1985)
19 A Pocket Guide to the Stars & Planets By: Duncan John (2006)
20 Astronomy Magazine – What Secrets Lurk in the Brightest Galaxies ? By Bruce Dorminey (March 2007)
21 National Geographic Magazine – Dicovering the First Galaxies By : Ron Cowen (Feb 2003)
22 http://www.thinnai.com/?module=displaystory&story_id=40712061&format=html(Black Hole Article -1)
23 http://www.thinnai.com/?module=displaystory&story_id=40808282&format=html(Black Hole Article -2)
24. http://www.thinnai.com/?module=displaystory&story_id=40810091&format=html[Collision of Balck Holes)
25 Discover Magazine – Whole Universe – Invisible Universe By Martin Rees & Priyamvada Natarajan. [Fall 2008]
26. The Evolution of Massive Black Hole Seeds By Marta Volonteri, Giuseppe Lodato and Priyamvada Natarajan, MNRAS, 383, 1079, [2008]
27. Science News – Upcoming Issue -Ultramassive (Black Hole) : As Big As it Gets By : Charles Petit [Oct 25, 2008]
28 Is There an Upper Limit to Black Hole Masses ? By Priyamvada Natarajan & Ezequiel Treister [in Press 2008]
29 India Abroad International Weekly – Priyamvada Natarajan Puts a Cap pn Black Holes : 10 Billion Times the Sun By : Aziz Haniffa [Sep 19, 2008]
30. Science Blog -Size Limit for Black Holes [Sep 11, 2008]
31. Yale Astronomer (Dr. Priyamvada Natarajan) Discovers Upper limit for Black Holes [Sep 4, 2008]
32 Dr. Priyamvada Natarajan Webpage : http://www.astro.yale.edu/priya/index.html – Associate Professor, Departments of Astronomy and Physics, Yale University, 260 Whitney Avenue, New Haven, CT 06511.

******************
jayabarat@tnt21.com [October 16, 2008]

47 THOUGHTS ON “இந்தியாவின் முதல் தமிழ்ப் பெண் விஞ்ஞானி”

  1. I wish her all success in her endeavour and bring out more and more scientific truth , which could be useful to mankind. I am sure she will be awarded with a Nobel prize for her excellent work.

  2. Please make your statement clear. What you want to say about her?

    How can she be the first woman Tamil scientist from India?
    Already there are many of them.

    I can understand that she might have done good work. Does it say that she the one first?

    So change the title.

  3. Dear Miss Nalini,

    Priya Natarajan’s scientific views have become international & published in several English & other European magazines. Her status is equivalent to Sir C.V. Raman.

    PLease see her website :

    Dr. Priyamvada Natarajan Webpage :

    http://www.astro.yale.edu/priya/index.html – Associate Professor, Departments of Astronomy and Physics, Yale University, 260 Whitney Avenue, New Haven, CT 06511.

    Whom do you think as the first International Tamil woman scientist ? List their names & their scientific works.

    Regards,
    S. Jayabarathan

    ++++++++++++++++++++

  4. Publications: Papers | Books and Book Chapters
    Papers

    1. Natarajan P., Croton, D., & Bertone, G. [2008] Consequences of dark matter self-annihilation for galaxy formation, MNRAS in press 2007arXiv0711.2302
    2. Wilson, G. W. et al., [2008] An ultra-bright, dust obscured, millimeter-galaxy beyond the Bullet Cluster, MNRAS submitted 2008arXiv0803.3462W
    3. Rines, K., Diaferio, A., & Natarajan, P. [2008] WMAP5 and the Cluster Mass Function, ApJ Lett., in press 2008arXiv0803.1843R
    4. Hennawi, J. F., et al. [2008] a New Survey for Giant Arcs. AJ, 135, 664 2008AJ….135..664H
    5. Volonteri, M., Lodato, G., & Natarajan, P. [2008] The evolution of massive black hole seeds, MNRAS, 383, 1079 2007arXiv0709.0529V
    6. Möller, O., Kitzbichler, M., & Natarajan, P. (2007) Strong lensing statistics in large, z <~ 0.2, surveys: bias in the lens galaxy population, MNRAS, 379, 1195 2007MNRAS.379.1195M
    7. Comerford, J. M., & Natarajan, P. (2007) The observed concentration-mass relation for galaxy clusters, MNRAS, 379, 190 2007MNRAS.379..190C
    8. Limousin, M., Sommer-Larsen, J., Natarajan, P., & Milvang-Jensen, B. (2007) Probing the truncation of galaxy dark matter halos in high density environments from hydrodynamical N-body simulations, arXiv, 706, arXiv:0706.3149 2007arXiv0706.3149L
    9. Lodato, G., & Natarajan, P. (2007) The mass function of high-redshift seed black holes, MNRAS, 377, L64 2007MNRAS.377L..64L
    10. Capelo, P. R., & Natarajan, P. (2007) How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?, arXiv, 705, arXiv:0705.3042 2007arXiv0705.3042C
    11. Natarajan, P., De Lucia, G., & Springel, V. (2007) Substructure in lensing clusters and simulations, MNRAS, 376, 180 2007MNRAS.376..180N
    12. Rines, K., Diaferio, A., & Natarajan, P. (2007) The Virial Mass Function of Nearby SDSS Galaxy Clusters, ApJ, 657, 183 2007ApJ…657..183R
    13. Lodato, G., & Natarajan, P. (2007) The mass function of high redshift seed black holes, astro, arXiv:astro-ph/0702340 2007astro.ph..2340L
    14. Limousin, M., Kneib, J. P., Bardeau, S., Natarajan, P., Czoske, O., Smail, I., Ebeling, H., & Smith, G. P. (2007) Truncation of galaxy dark matter halos in high density environments, A&A, 461, 881 2007A&A…461..881L
    15. Limousin, M., et al. (2006) Combining Strong and Weak Gravitational Lensing in Abell 1689, astro, arXiv:astro-ph/0612165 2006astro.ph.12165L
    16. Aazami, A. B., & Natarajan, P. (2006) Substructure and the cusp and fold relations, MNRAS, 372, 1692 2006MNRAS.372.1692A
    17. Cobb, B. E., Bailyn, C. D., van Dokkum, P. G., & Natarajan, P. (2006) Could GRB 060614 and Its Presumed Host Galaxy Be a Chance Superposition?, ApJ, 651, L85 2006ApJ…651L..85C
    18. Lodato, G., & Natarajan, P. (2006) Supermassive black hole formation during the assembly of pre-galactic discs, MNRAS, 371, 1813 2006MNRAS.371.1813L
    19. Hennawi, J. F., et al. (2006) A New Survey for Giant Arcs, astro, arXiv:astro-ph/0610061 2006astro.ph.10061H
    20. Natarajan, P. (2006) Galaxy-Galaxy Lensing Constraints on Mass Profiles, aglu.conf, 2006aglu.confE..29N
    21. Benatov, L., Rines, K., Natarajan, P., Kravtsov, A., & Nagai, D. (2006) Galaxy orbits and the intracluster gas temperature in clusters, MNRAS, 370, 427 2006MNRAS.370..427B
    22. Cobb, B. E., Bailyn, C. D., van Dokkum, P. G., & Natarajan, P. (2006) SN 2006aj and the Nature of Low-Luminosity Gamma-Ray Bursts, ApJ, 645, L113 2006ApJ…645L.113C
    23. Escala, A., & Natarajan, P. (2006) Binary Black Holes, pgn..prog, 2006pgn..progE…2E
    24. Limousin, M., Kneib, J., & Natarajan, P. (2006) Galaxy Galaxy Lensing as a Probe of Galaxy Dark Matter Halos, astro, arXiv:astro-ph/0606447 2006astro.ph..6447L
    25. Gilmore, J., & Natarajan, P. (2006) Cluster Strong Lensing Constraints on Dark Energy, astro, arXiv:astro-ph/0605245 2006astro.ph..5245G
    26. Jakobsson, P., et al. (2006) GRB 050814 at z = 5.3 and the Redshift Distribution of Swift GRBs, AIPC, 836, 552 2006AIPC..836..552J
    27. Treister, E., et al. (2006) Spitzer Number Counts of Active Galactic Nuclei in the GOODS Fields, ApJ, 640, 603 2006ApJ…640..603T
    28. Jakobsson, P., et al. (2006) A mean redshift of 2.8 for Swift gamma-ray bursts, A&A, 447, 897 2006A&A…447..897J
    29. Armitage, P. J., & Natarajan, P. (2005) Eccentricity of Supermassive Black Hole Binaries Coalescing from Gas-rich Mergers, ApJ, 634, 921 2005ApJ…634..921A
    30. Natarajan, P., Albanna, B., Hjorth, J., Ramirez-Ruiz, E., Tanvir, N., & Wijers, R. (2005) The redshift distribution of gamma-ray bursts revisited, MNRAS, 364, L8 2005MNRAS.364L…8N
    31. Limousin, M., Kneib, J.-P., & Natarajan, P. (2005) Constraining the mass distribution of galaxies using galaxy-galaxy lensing in clusters and in the field, MNRAS, 356, 309 2005MNRAS.356..309L
    32. Natarajan, P., & Springel, V. (2004) Abundance of Substructure in Clusters of Galaxies, ApJ, 617, L13 2004ApJ…617L..13N
    33. Natarajan, P., Kneib, J.-P., Smail, I., & Ellis, R. (2004) Quantifying Substructure Using Galaxy-Galaxy Lensing in Distant Clusters, astro, arXiv:astro-ph/0411426 2004astro.ph.11426N
    34. Barnard, V. E., et al. (2004) SCUBA Observations of the Host Galaxies of Gamma-Ray Bursts, AIPC, 727, 508 2004AIPC..727..508B
    35. Tanvir, N. R., et al. (2004) The submillimetre properties of gamma-ray burst host galaxies, MNRAS, 352, 1073 2004MNRAS.352.1073T
    36. Natarajan, P. (2004) Modeling the Accretion History of Supermassive Black Holes, ASSL, 308, 127 2004ASSL..308..127N
    37. Natarajan, P. (2004) Probing the Nature of Dark Matter Using Cluster Lensing, hst..prop, 6620 2004hst..prop.6620N
    38. Tanvir, N. R., et al. (2004) Sub-mm Observations of GRB Host Galaxies, ASPC, 312, 275 2004ASPC..312..275T
    39. Kneib, J.-P., et al. (2003) A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+1654 at z=0.4. II. The Cluster Mass Distribution, ApJ, 598, 804 2003ApJ…598..804K
    40. Quadri, R., Möller, O., & Natarajan, P. (2003) Lensing Effects of Misaligned Disks in Dark Matter Halos, ApJ, 597, 659 2003ApJ…597..659Q
    41. Treu, T., Ellis, R. S., Kneib, J.-P., Dressler, A., Smail, I., Czoske, O., Oemler, A., & Natarajan, P. (2003) A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+16 at z = 0.4. I. Morphological Distributions to 5 Mpc Radius, ApJ, 591, 53 2003ApJ…591…53T
    42. Natarajan, P. (2003) Probing the Distribution of Mass via Gravitational Lensing, AIPC, 666, 113 2003AIPC..666..113N
    43. Jaunsen, A. O., et al. (2003) An HST study of three very faint GRB host galaxies, A&A, 402, 125 2003A&A…402..125J
    44. Barnard, V. E., et al. (2003) SCUBA observations of the host galaxies of four dark gamma-ray bursts, MNRAS, 338, 1 2003MNRAS.338….1B
    45. Natarajan, P., Loeb, A., Kneib, J.-P., & Smail, I. (2002) Constraints on the Collisional Nature of the Dark Matter from Gravitational Lensing in the Cluster A2218, ApJ, 580, L17 2002ApJ…580L..17N
    46. Natarajan, P., Kneib, J.-P., & Smail, I. (2002) Evidence for Tidal Stripping of Dark Matter Halos in Massive Cluster Lenses, ApJ, 580, L11 2002ApJ…580L..11N
    47. Hjorth, J., et al. (2002) The Afterglow and Complex Environment of the Optically Dim Burst GRB 980613, ApJ, 576, 113 2002ApJ…576..113H
    48. Möller, O., Natarajan, P., Kneib, J.-P., & Blain, A. W. (2002) Probing the Mass Distribution in Groups of Galaxies using Gravitational Lensing, ApJ, 573, 562 2002ApJ…573..562M
    49. Schneider, R., Ferrara, A., Natarajan, P., & Omukai, K. (2002) First Stars, Very Massive Black Holes, and Metals, ApJ, 571, 30 2002ApJ…571…30S
    50. Crittenden, R. G., Natarajan, P., Pen, U.-L., & Theuns, T. (2002) Discriminating Weak Lensing from Intrinsic Spin Correlations Using the Curl-Gradient Decomposition, ApJ, 568, 20 2002ApJ…568…20C
    51. Armitage, P. J., & Natarajan, P. (2002) Accretion during the Merger of Supermassive Black Holes, ApJ, 567, L9 2002ApJ…567L…9A
    52. Goldberg, D. M., & Natarajan, P. (2002) The Galaxy Octopole Moment as a Probe of Weak-Lensing Shear Fields, ApJ, 564, 65 2002ApJ…564…65G
    53. Escala, A., & Natarajan, P. (2002) Determining the three-dimensional shapes of galaxy clusters, sgdh.conf, 105 2002sgdh.conf..105E
    54. Natarajan, P. (2002) Measuring the flattening of dark matter halos, sgdh.conf, 9 2002sgdh.conf….9N
    55. Natarajan, P. (2002) The shapes of galaxies and their dark halos, sgdh.conf, 2002sgdh.conf…..N
    56. Treu, T., Ellis, R. S., Trivedi, P., Kneib, J.-P., Dressler, A., Oemler, A., Natarajan, P., & Smail, I. R. (2002) A Wide Field Survey of the Distant Rich Cluster C10024+1654, ASPC, 268, 277 2002ASPC..268..277T
    57. Crittenden, R. G., Natarajan, P., Pen, U.-L., & Theuns, T. (2001) Spin-induced Galaxy Alignments and Their Implications for Weak-Lensing Measurements, ApJ, 559, 552 2001ApJ…559..552C
    58. Holland, S., et al. (2001) The host galaxy and optical light curve of the gamma-ray burst GRB 980703, A&A, 371, 52 2001A&A…371…52H
    59. Natarajan, P., Kneib, J.-P., & Smail, I. (2001) Galaxy-Galaxy Lensing in Clusters: New Results, ASPC, 237, 391 2001ASPC..237..391N
    60. Möller, O., & Natarajan, P. (2001) Lensing by Groups of Galaxies, ASPC, 237, 329 2001ASPC..237..329M
    61. Natarajan, P., Crittenden, R. G., Pen, U.-L., & Theuns, T. (2001) Do Angular Momentum Induced Ellipticity Correlations Contaminate Weak Lensing Measurements?, PASA, 18, 198 2001PASA…18..198N
    62. Tanvir, N. R., et al. (2001) A Deep, High-Resolution Imaging Survey of GRB Host Galaxies, grba.conf, 212 2001grba.conf..212T
    63. Natarajan, P., & Almaini, O. (2000) Stellar contributors to the hard X-ray background?, MNRAS, 318, L21 2000MNRAS.318L..21N
    64. Fynbo, J. U., et al. (2000) Hubble Space Telescope Space Telescope Imaging Spectrograph Imaging of the Host Galaxy of GRB 980425/SN 1998BW, ApJ, 542, L89 2000ApJ…542L..89F
    65. Natarajan, P., & Refregier, A. (2000) Two-Dimensional Galaxy-Galaxy Lensing: A Direct Measure of the Flattening and Alignment of Light and Mass in Galaxies, ApJ, 538, L113 2000ApJ…538L.113N
    66. Blain, A. W., & Natarajan, P. (2000) Gamma-ray bursts and the history of star formation, MNRAS, 312, L35 2000MNRAS.312L..35B
    67. Holland, S., et al. (2000) GRB980425, HST/STIS observations of the host galaxy., GCN, 704, 1 2000GCN…704….1H
    68. Holland, S., et al. (2000) GRB980519, HST/STIS observations of the host galaxy., GCN, 698, 1 2000GCN…698….1H
    69. Natarajan, P., & Armitage, P. J. (1999) Warped discs and the directional stability of jets in active galactic nuclei, MNRAS, 309, 961 1999MNRAS.309..961N
    70. Armitage, P. J., & Natarajan, P. (1999) Lense-Thirring Precession of Accretion Disks around Compact Objects, ApJ, 525, 909 1999ApJ…525..909A
    71. Natarajan, P., Kneib, J.-P., & Smail, I. (1999) Galaxy-galaxy lensing in clusters: new results, astro, arXiv:astro-ph/9909349 1999astro.ph..9349N
    72. Moeller, O., & Natarajan, P. (1999) Lensing by Groups of Galaxies, astro, arXiv:astro-ph/9909303 1999astro.ph..9303M
    73. Armitage, P. J., & Natarajan, P. (1999) The Blandford-Znajek Mechanism and the Emission from Isolated Accreting Black Holes, ApJ, 523, L7 1999ApJ…523L…7A
    74. Natarajan, P. (1999) Constraints on the Accretion History of Super-Massive Black Holes, ASPC, 182, 100 1999ASPC..182..100N
    75. Natarajan, P. (1999) Massive X-ray binaries and the X-ray background, AIPC, 470, 287 1999AIPC..470..287N
    76. Natarajan, P. (1999) Accretion History of Super-massive Black Holes, ASPC, 160, 297 1999ASPC..160..297N
    77. Natarajan, P. (1999) Consequences of Feedback from Early Supernovae for Disk Assembly, ApJ, 512, L105 1999ApJ…512L.105N
    78. Natarajan, P., & Sigurdsson, S. (1999) Sunyaev–Zeldovich decrements with no clusters?, MNRAS, 302, 288 1999MNRAS.302..288N
    79. Natarajan, P. (1999) Evidence for Dark Matter in Clusters from Lensing Studies, AIPC, 478, 295 1999AIPC..478..295N
    80. Natarajan, P. [1998] Do cluster galaxies have extended dark halos? Results from the HST, tx19.conf, 1998tx19.confE.298N
    81. Haehnelt, M. G., Natarajan, P., & Rees, M. J. [1998] High-redshift galaxies, their active nuclei and central black holes, MNRAS, 300, 817 1998MNRAS.300..817H
    82. Natarajan, P., & Pringle, J. E. [1998] The Alignment of Disk and Black Hole Spins in Active Galactic Nuclei, ApJ, 506, L97 1998 ApJ…506L..97N
    83. Natarajan, P., Sigurdsson, S., & Silk, J. [1998] Quasar outflows and the formation of dwarf galaxies, MNRAS, 298, 577 1998MNRAS.298..577N
    84. Natarajan, P., Kneib, J.-P., Smail, I., & Ellis, R. S. [1998] The Mass-to-Light Ratio of Early-Type Galaxies: Constraints from Gravitational Lensing in the Rich Cluster AC 114, ApJ, 499, 600 1998ApJ…499..600N
    85. Wijers, R. A. M. J., Bloom, J. S., Bagla, J. S., & Natarajan, P. [1998] Gamma-ray bursts from stellar remnants – Probing the universe at high redshift, MNRAS, 294, L13 1998 MNRAS.294L..13W
    86. Natarajan, P. [1998] PhDT, 1998PhDT………5N
    87. Natarajan, P. [1998] Do Cluster Galaxies Have Extended Dark Halos?, lsst.conf, 341 1998 lsst.conf..341N
    88. Natarajan, P., et al. (1997) The host to gamma-ray burst 970508: a distant dwarf galaxy?, NewA, 2, 471 1997NewA….2..471N
    89. Natarajan, P., & Pettini, M. (1997) Estimating the mass density of neutral gas at z<1, MNRAS, 291, L28 1997MNRAS.291L..28N
    90. Natarajan, P., & Kneib, J.-P. (1997) Lensing by galaxy haloes in clusters of galaxies, MNRAS, 287, 833 1997MNRAS.287..833N
    91. Natarajan, P., Hjorth, J., & van Kampen, E. (1997) Distribution functions for clusters of galaxies from N-body simulations, MNRAS, 286, 329 1997MNRAS.286..329N
    92. Natarajan, P., & Lynden-Bell, D. (1997) An Analytic Approximation to the Isothermal Sphere, MNRAS, 286, 268 1997MNRAS.286..268N
    93. Natarajan, P., & Sigurdsson, S. (1997) Sunyaev-Zeldovich decrements with no clusters?, astro, arXiv:astro-ph/9704237 1997astro.ph..4237N
    94. Natarajan, P. (1997) Probing Galaxy Halos in Cluster-Lenses: First Results for AC114, hsth.conf, 253 1997hsth.conf..253N
    95. Natarajan, P., & Lahav, O. (1996) Testing cosmological models, Obs, 116, 353 1996Obs…116..353N
    96. Natarajan, P., & Kneib, J.-P. (1996) Probing the dynamics of cluster-lenses, MNRAS, 283, 1031 1996MNRAS.283.1031N
    97. Natarajan, P. (1996) Measuring the Mass-to-Light Ratio of Cluster Galaxies, AAS, 28, 1308 1996AAS…189.2707N
    98. Natarajan, P., & Kneib, J.-P. (1996) Effect Of Sub-Structure In Clusters On The Local Weak-ShearField, IAUS, 173, 155 1996IAUS..173..155N
    99. Natarajan, P. (1996) Study of the Dynamics of the Core of A2218, ASPC, 88, 164 1996ASPC…88..164N

    Books and Book Chapters

    1. The Shapes of Galaxies and their Dark Halos, World Scientific, 2002
    2. Modeling the Accretion History of Supermassive Black Holes, Editor: Amy J. Barger, published by Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004, Chap. 4, p.127

    +++++++++++++++

  5. Tell me what is your definition of Scientist?
    Go to any research institute in India and you see there are many woman research scientists(many of them I know are Tamils) who work more than twenty years after their Ph. D. And who are all well-known in their International research area.

    If you want to put her in your website you can keep it like
    ” Great Tamil woman scientist” . No one can say what is “Great”. So it would not matter at all. But the “FIRST” is no where near to correct. If she thinks she is the first one I think then you are in “some other World”.

    Please do not give wrong information. I hope now you understand.

  6. Dear Miss Nalini,

    Please give me the names of the Tamil women scientists, if you know & whom you think are the first ones & list their international works.

    When I say first rank women scientist I mean research scientists like Marie Curie, Irene Joliet Curie or Lise Meitner. Just getting a Ph.D. Science degree will not make one the first woman scientist of international reputation.

    The number of years one spent in research does not tell me anything. Thanks for the comments.

    Regards,
    S. Jayabarathan

    +++++++++++++++++++++++

  7. Hello,

    I sent her mail. If she accepts it then let me see.

    It seems that you have not come out your own house for long time. How can you say some one is “first”. Do not you understand what “first” means?

  8. Dear Ms. Nalini,

    Galileo has been named & recognized by all scientists as the First Male Scientist in Europe in fact in the world even though there were some scientists like Copernicus & Bruno even before him. I consider Dr. Priya Natarajan as the First Tamil Woman Scientist of India, as I do not know anyone else. It is my point of view.

    When I say “First” it does not mean first in absolute number but means “Prime, Reputed or Main” in the real sense. As per the Oxford Dictionary “First” also means “Highest Repute.”

    Do people know who is the first (numerical) Tamil woman scientist in India ? I do not know.

    Regards,
    S. Jayabarathan

  9. தமிழன் தான் தலையிலே தானே மண்ணைப் போட்டுக்குறதும் , தானே கிரீடம் தூக்கி வைத்துக் கொள்வதிலும் எப்பயும் மாறப் போறது இல்ல.

    என்ன ஒன்னு மனசு கேட்கறது இல்ல.

    வாழ்க வளமுடன்

  10. அன்புள்ள நளினி,

    பெருமைப்பட வேண்டிய ஒரு தமிழ்ப்பெண் விஞ்ஞானியை பற்றிப் பாராட்ட ஒரு தமிழ் மாதுக்கு மன விருப்பம் இல்லை. இது மன முதிர்ச்சியைக் காட்டவில்லை.

    சி. ஜெயபாரதன்.

  11. உண்மைக்கு மட்டுமே நான் தலை வணங்குவேன்!
    ஒரு சமூகம் நீங்கள் குறிப்பிட்ட விஞானியைப் பாராட்டி விருது தரட்டும்.
    மனம் மகிழ்ந்து ஏற்று கொள்கிறேன்.

    என் பிள்ளையை நான் உச்சி மோந்து கொள்ளலாம்!
    அதை ஊராரும் மெச்சும் பொது தான் எனக்கு பெருமை!

    அது இருக்கட்டும். நான் அவருக்கு அனுப்பிய மைலுக்கு அவர் பதிலே காணோம்?

  12. அன்புள்ள நளினி,

    நீங்கள் ஒரு விஞ்ஞானியா ? டாக்டர் பிரியா நடராஜன் 21 ஆம் நூற்றாண்டில் உலக விஞ்ஞானிகள் கவனத்தைக் கவர்ந்த ஓர் இந்தியப் பிரபஞ்சவியல் விஞ்ஞானி. இதைவிட என்ன சான்றுகள் வேண்டும் ?

    அவர் எழுதிய விஞ்ஞானக் கட்டுரைகள் அட்டவணையைக் கட்டுரைக்கு அடியில் பாருங்கள்.

    அன்புடன்,
    சி. ஜெயபாரதன்

  13. Dear Dr. Priya Natarajan,

    http://www.dailygalaxy.com/my_weblog/2008/12/18-billion-suns.html

    /// Craig Wheeler of the University of Texas in Austin, USA, in his letter, says it depends only on how long a black hole has been around and how fast it has swallowed matter in order to grow. “There is no theoretical upper limit,” he says. ///

    Kindly read this information & comment, regarding the 18 Billion Suns – Biggest Blackhole discovered.

    Regards,
    S. Jayabarathan

  14. Dear Jayabarathan

    Its a question of semantics of what means theoretically, so let me
    clarify the point here.

    Sure —- how long a black hole has been around and how much mass it has accreted determines the mass of the black hole.

    However, our Universe has a finite age. So even if an astrophysical black hole is as old as the entire Universe (which is 13.7 billion years old) and has been steadily accreting at what we think is a theoretical limit to the accretion rate – the Eddington rate (there are instances and periods of time where the accretion exceeds this value but it cannot exceed this value for the entire 13.7 billion years). So folding these two facts we can derive an upper limit theoretically to the mass of a black hole. What is interesting about our result is that we find **observational evidence from the X-ray data for the existence of an upper limit at every epoch in the Universe. At any given epoch say when the Universe is 10 billion years old, there is an upper limit to which at that epoch a black hole at the center of a galaxy can grow to. Once this mass cap is reached accretion onto the hole is shut off. At a later time this galaxy can merge with another galaxy and therefore bring in renewed gas supply right to the center, in which case accretion will resume till the mass limit for epoch is reached, at which point it shuts off again. The whole process is self-regulated. OJ287 is a special case — it does not appear to be at the center of a galaxy (if it is in own the galaxy is too faint which is puzzling), besides it is also speculated to a binary black hole — a pair of black holes bound together prior to a final merger. This is also a variable source in terms of its emission and is therefore likely a different category of object from the ones we are finding in the centers of bright galaxies.

    Hope this is useful —-

    cheers
    Prof. Priya Natarajan

    Priya Natarajan
    Emeline Bigelow Conland Fellow and Bunting Fellow
    Radcliffe Institute for Advanced Study, Harvard University
    Associate Professor
    Departments of Astronomy, and Physics
    Yale University
    260 Whitney Avenue
    New Haven, CT 06511
    phone: (203) 436-4833
    email: priya@astro.yale.edupriyamvada_natarajan@radcliffe.edu
    url: http://www.astro.yale.edu/priya/

  15. Dear Dr. Priya Natarajan

    Thanks for the expedite reply.

    Craig Wheeler’s conclusion, “There is no theoretical upper limit,” for the super giant black holes is a big statement but it seems to me as if it is vague still. My view is Black holes are tip of the icebergs floating in the universe. That means their size is limited. As you say it may overflow after your limit (10 billion Suns) giving birth to another growing baby black hole nearby. In that case together as a binary they may weigh more than 10 billion Suns limit.

    Will you agree to his opinion that may be applicable to a binary black hole & not a single one ?

    Your announcement of upper limit for super giant black hole is a bigger statement & it is specific & understandable to a single one.

    Can I quote your points of view on Super Giant Blackholes in my website & Thinnai.com ?

    Regards,
    S. Jayabarathan

  16. Dear Mr. Jayabarathan

    The upper limit derived by me and my collaborator is for a single black hole and is valid for the black hole at the center of the Milky Way. The physical processes that determine the upper limit are not in operation for a binary black hole system (which is why I mentioned in my earlier email to that the limit is inapplicable to OJ287 which is most definitely a binary black hole system). As for the claim of the twin hole, this twin is in a neighboring galaxy so this is not a binary pair of the black hole in our galaxy. The black hole in the center of the Milky Way has reached its upper limit, its upper limit is a few times 106 solar masses. The upper limit of 10 billion suns is for the black holes in the center of the brightest galaxy in the local Universe (the Milky Way is a very average luminosity galaxy). Brighter galaxies tend to host the more massive black holes.

    Hope this is useful

    cheers
    priya

    Priya Natarajan

    Emeline Bigelow Conland Fellow and Bunting Fellow
    Radcliffe Institute for Advanced Study, Harvard University
    Associate Professor
    Departments of Astronomy, and Physics
    Yale University
    260 Whitney Avenue
    New Haven, CT 06511
    phone: (203) 436-4833
    email: priya@astro.yale.edupriyamvada_natarajan@radcliffe.edu
    url: http://www.astro.yale.edu/priya/

  17. Reply |Priyamvada Natarajan to me

    Hi there

    This is the same object OJ287 that we talked about earlier. Sure, this is the maximum mass and its in concordance with my predictions. If you look back at your email thread from me, you will see that this is the same object and same measurement that was reported early this year.

    cheers
    priya

    Priyamvada Natarajan
    Professor, Departments of Astronomy, and Physics
    Yale University
    260 Whitney Avenue
    New Haven, CT 06511
    phone: (203) 436-4833
    email: priyamvada.natarajan@yale.edu

  18. Dear Dr. Priya Natarajan,

    Here is one new message on a 40 Billion Sun Black Hole. Could you please comment on it ?

    http://www.dailygalaxy.com/my_weblog/2009/07/the-secret-behind-blobs-in-space-its-not-scifi.html

    /// Astronomers are puzzled by the object, which they think could be ionized gas powered by a super-massive black hole; a primordial galaxy with large gas accretion; a collision of two large young galaxies; super wind from intensive star formation; or a single giant galaxy with a large mass of about 40 billion Suns.///

    Regards,
    Jayabarathan

  19. Dear Jeya,

    thank you for all your wonderful suff.

    My simple question on blackholes is–

    Can anyone predict the size of the central black hole? Meaning the whole known universes and the undisovered universes must spin around a central black hole. Now for an observed black hole, yes I’m pretty sure the size can be predicted… based on the observations of similar kind.

    But how can one predict the size of the undiscovered, unobserved and unknown black holes….??

    Q1) What is mathematical formulae Dr. Priya Natarajan uses, to come to her conclusions?

    She says,”The upper limit derived by me and my collaborator is for a single black hole and is valid for the black hole at the center of the Milky Way.”

    Q2) Then what is the upper limit, for the black hole at the centre of all known and unknown universes?

    How will one arrive at its upper limit? Can they measure it? Can infinity be measured??

    Pls share your insights.

    with love
    ted jacob

  20. Dear TJ

    Here is Professor Priya Natarajan’s reply

    Jayabarathan

    +++++

    2009/8/12 Priyamvada Natarajan

    Hi there

    //// thank you for all your wonderful suff.

    My simple question on blackholes is–

    Can anyone predict the size of the central black hole? Meaning the whole known universes and the undisovered universes must spin around a central black hole. Now for an observed black hole, yes I’m pretty sure the size can be predicted… based on the observations of similar kind.

    There is no center to the Universe, there is no central black hole in the Universe. There is however a black
    hole at the center of pretty much every galaxy in the Universe. We can now predict the upper limit to the masses
    of all the BHs in the centers of all galaxies in the Universe (not just the Milky Way). Our work is valid for all galaxies.
    These estimates are valid even if we dont `see’ the BH, we almost never directly see the BH, we see its gravitational
    effect in the inner most regions of galaxies.

    But how can one predict the size of the undiscovered, unobserved and unknown black holes….??

    Q1) What is mathematical formulae Dr. Priya Natarajan uses, to come to her conclusions?

    There is a published paper that is available on the web.
    //// The title of our paper is `Is there an upper limit to Black Hole masses? ///

    She says,”The upper limit derived by me and my collaborator is for a single black hole and is valid for the black hole at the center of the Milky Way.”

    Its valid for all galaxies not just the Milky Way, I am being mis-quoted here. We have tested it against the estimates
    of the mass of the BH in the Milky Way using other methods.

    Q2) Then what is the upper limit, for the black hole at the centre of all known and unknown universes?

    How will one arrive at its upper limit? Can they measure it? Can infinity be measured??

    These questions I am afraid do not make any sense —0

    cheers
    priya

    Priyamvada Natarajan
    Professor, Departments of Astronomy, and Physics
    Yale University
    260 Whitney Avenue
    New Haven, CT 06511
    phone: (203) 436-4833
    email: priyamvada.natarajan@yale.edu
    url: http://www.astro.yale.edu/priya/

    ++++++++++++++++++++++

  21. Dear Professor Priya Natarajan,

    The following extract is from your previous letter dated : January 28, 2009

    /// Dear Mr. Jayabarathan

    The upper limit derived by me and my collaborator is for a single black hole and is valid for the black hole at the center of the Milky Way. The physical processes that determine the upper limit are not in operation for a binary black hole system (which is why I mentioned in my earlier email to that the limit is inapplicable to OJ287 which is most definitely a binary black hole system). As for the claim of the twin hole, this twin is in a neighboring galaxy so this is not a binary pair of the black hole in our galaxy. The black hole in the center of the Milky Way has reached its upper limit, its upper limit is a few times 106 solar masses. The upper limit of 10 billion suns is for the black holes in the center of the brightest galaxy in the local Universe (the Milky Way is a very average luminosity galaxy). Brighter galaxies tend to host the more massive black holes.

    Hope this is useful
    cheers
    priya

    Priya Natarajan
    Emeline Bigelow Conland Fellow and Bunting Fellow
    Radcliffe Institute for Advanced Study, Harvard University
    Associate Professor
    Departments of Astronomy, and Physics
    Yale University
    260 Whitney Avenue
    New Haven, CT 06511
    phone: (203) 436-4833
    email: priya@astro.yale.edupriyamvada_natarajan@radcliffe.edu
    url: http://www.astro.yale.edu/priya/

    /// She says,”The upper limit derived by me and my collaborator is for a single black hole and is valid for the black hole at the center of the Milky Way.” ///

    Its valid for all galaxies not just the Milky Way, I am being mis-quoted here. We have tested it against the estimates of the mass of the BH in the Milky Way using other methods. ///

    Regards,
    Jayabarathan

  22. Priyamvada Natarajan Reply to Jayabarathan

    Sure, but the upper limit we estimate is not valid just for the Milky Way, it is valid for all galaxies. Our estimates have been tested for the Milky Way and a couple of other galaxies for which we can estimate Black Hole masses by other techniques.

    Note that the reason our work is important is because it is applicable to all isolated galaxies with single supermassive Black Holes in their centers not only the Milky Way.

    Hope this helps —

    cheers
    priya

  23. Is there an upper limit to black hole masses?

    ( [astro-ph] Article : arXiv:0808.2813v2 )
    Authors: Priyamvada Natarajan, Ezequiel Treister

    (Submitted on 20 Aug 2008 (v1), last revised 31 Aug 2008 (this version, v2))

    Abstract: We make a case for the existence for ultra-massive black holes (UMBHs) in the Universe, but argue that there exists a likely upper limit to black hole masses of the order of $M \sim 10^{10} \msun$. We show that there are three strong lines of argument that predicate the existence of UMBHs: (i) expected as a natural extension of the observed black hole mass bulge luminosity relation, when extrapolated to the bulge luminosities of bright central galaxies in clusters; (ii) new predictions for the mass function of seed black holes at high redshifts predict that growth via accretion or merger-induced accretion inevitably leads to the existence of rare UMBHs at late times; (iii) the local mass function of black holes computed from the observed X-ray luminosity functions of active galactic nuclei predict the existence of a high mass tail in the black hole mass function at $z = 0$. Consistency between the optical and X-ray census of the local black hole mass function requires an upper limit to black hole masses. This consistent picture also predicts that the slope of the $M_{\rm bh}$-$\sigma$ relation will evolve with redshift at the high mass end. Models of self-regulation that explain the co-evolution of the stellar component and nuclear black holes naturally provide such an upper limit. The combination of multi-wavelength constraints predicts the existence of UMBHs and simultaneously provides an upper limit to their masses. The typical hosts for these local UMBHs are likely the bright, central cluster galaxies in the nearby Universe.

    Comments: 9 pages, 4 figures. MNRAS accepted, references updated
    Subjects: Astrophysics (astro-ph)
    Cite as: arXiv:0808.2813v2 [astro-ph]

    Submission history
    From: Priya Natarajan [view email]

    [v1] Wed, 20 Aug 2008 20:00:07 GMT (58kb)
    [v2] Sun, 31 Aug 2008 00:43:12 GMT (51kb)

    The title of our paper is `Is there an upper limit to Black Hole masses?’

  24. Pingback: காலக்ஸி குவியீர்ப்பு நோக்கு முறையில் கருஞ்சக்தி திணிவு ஆய்வு « நெஞ்சின் அலைகள்Edit
  25. Dear Jayabaratan,

    I read all your works. Great.Keep it up.
    I like to communicate with you personally soon
    Can I know your personal email add. So I can write you in details.
    Congratulation for Dr.Piriya, Very happy to hear that
    Tamil women in this kind of Research.

  26. This page seems to get a large ammount of visitors. How do you promote it? It gives a nice unique spin on things. I guess having something real or substantial to give info on is the most important factor.

  27. This site seems to get a large ammount of visitors. How do you promote it? It gives a nice individual spin on things. I guess having something real or substantial to give info on is the most important thing.

  28. A well written post, I simply given this onto a colleague who was doing somewhat analysis on that. And he indeed purchased me breakfast as a result of I discovered it for him .. so let me reword that: Thankx for the treat! however yeah Thnx for spending the time to talk about this, I feel strongly concerning it and luxuriate in reading more on this topic. If doable, as you become expertise, would you mind updating your blog with more info? it’s extremely useful for me. two thumb up for this blog!

  29. I wanted to say your blog is extraordinarily good. I always prefer to hear something new concerning this as a result of I even have the similar blog in my Country on this subject therefore this help´s me lots. I did a hunt on the matter and observed a wonderful type of blogs however nothing like this.Thanks for sharing such a lot within your blog.

  30. Dear Professor Priya Natarajan,

    Today I read in the Daily Galaxy the following news for the upper limit for Blackholes greater than 10 billion solar masses & I would like to ask you about it.

    http://www.dailygalaxy.com/my_weblog/2011/06/black-holes-larger-than-a-galaxy-new-techniques-allow-astronomers-to-measure-these-supermassive-obje.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+TheDailyGalaxyNewsFromPlanetEarthBeyond+%28The+Daily+Galaxy%3A+News+from+Planet+Earth+%26+Beyond%29

    The largest known supermassive black hole described below, contains 18 billion solar masses of material. Although black holes are dark, their masses can be measured quite precisely from their gravitational influence on stars and other matter. Astronomers have done just that over the past few decades by looking at the way gas around a nucleus moves under the influence of the massive black hole. The results on dozens of galaxies so far have shown that black hole sizes can be reliably estimated with this technique.

    With Kind Regards,
    Jayabarathan

  31. ok sir we should be very proud of the scientist Dr.Priya Natarajan,as she is a Tamil lady.It is so because 30 years back if any lady wanted to continue her study after high school life ,she would not be allowed even in and amongst the educated family.Therefore this is a really great name and fame she earned.We should salute her.

    • ok sir we should be very proud of the scientist Dr.Priya Natarajan,as she is a Tamil lady.It is so because 30 years back if any lady wanted to continue her study after high school life ,she would not be allowed even in and amongst the educated family.Therefore this is a really great name and fame she earned.We should salute her.Plz pass this message to that great scientist also and I am now in USA very nearer to her town.My son and daughter-in -law are in RhodeIsland, the Briston.With greetings ,DK

  32. Respected Madam,
    I am sure you would have read the book on ‘The Tao of Physics’ by Fritjof Capra first published in 1975.The same author has written the book on ‘Turning Point’.
    If I am not taking much of your invaluable time, may I request you to throw a light on the following as a Physicist.
    In page 269 of The Tao of Physics, the author writes as, The Eastern mystics have a dynamic view of the universe similar to that of modern physics, and consequently it is not surprising that they, too, have used the image of the dance to convey their intuition of nature….The metaphor of the cosmic dance has found its most profound and beautiful expression in Hinduism in the image of the dancing god Shiva……in page 270, As Heinrich Zimmer has put it: “His gestures wild and full of grace, precipitate the cosmic illusion; his flying arms and legs and the swaying of his torso produce–indeed, they are –the continuous creation-destruction of the universe, death exactly balancing birth,annihilation the end of every coming-forth”.
    Will you please comment on this.Please do not brush aside by saying that it is not related to your study. I am retired yoga teacher of Tamil Nadu.I had associated with eminent neuro-scientist Dr.B.Ramamurthi in late 70’s and early 80’s.My interested area is to study the co-relation of consiousness in Neuro-Psychology and consciousness in and or of the matter.
    Thanking you, yours truly, Sri.K.A.Jayakumar 29/11/2014 9.15a.m.

  33. Pingback: இதுவரைப் பார்வைகள் (டிசம்பர் 31, 2017) | . . . . . நெஞ்சின் அலைகள் . . . . . வையகத் தமிழ் வலைப் பூங்காEdit
  34. Pingback: 2017 ஆண்டுப் பார்வைகள் | . . . . . நெஞ்சின் அலைகள் . . . . . வையகத் தமிழ் வலைப் பூங்கா

இரண்டு விண்மீன்கள் மோதும் போது, ஒளிவெடிப்பில் ஒன்றாகிக் கதிரியக்க மூலக்கூறுகளைப் பொழிகின்றன.

Featured

சி. ஜெயபாரதன் B.E.(Hons) P.Eng (Nuclear) கனடா

 

++++++++++++++++
மோதும் இரண்டு விண்மீன்கள் ஒன்றாய் ஒளிவீசி கதிரியக்க மூலக்கூறுகளை வெளியேற்றும்.
நமது சூரியன்போல் இரண்டு விண்மீன்கள் மோதிக் கொண்டால்,  அதன் விளைவுக் காட்சி : உன்னத ஒளிமய வெடிப்புக் காட்சி !  முடிவாகப் பெரியதோர் புதிய விண்மீன் ! அப்படி ஒரு காட்சி 1670 இல் தோன்றியது.  கண்டோருக்குச் செந்நிறத்தில்  தெரிந்தது ஒரு புதிய சூரியன்.  ஆரம்பத்தில் நேராக வானில் கண்ணுக்குத் தெரிந்த அந்த ஒளிக்காட்சி, பின்னர் உடனே மறைந்து, இணையும் நிகழ்ச்சி மங்கலாகி, தற்போது நுணுக்கமான தொலைநோக்கி மூலம்தான் காண முடிகிறது. இப்போது அதைச் சுற்றிலும் மங்கிய ஓர் கசிவு முகில் வளையமே தென்படுகிறது.
இந்நிகழ்ச்சி நேர்ந்து சுமார் 348 ஆண்டுகள் கடந்து [1670 + 348 = 2018]   2018 ஆம் ஆண்டு ஜூலையில், அகிலநாட்டு வானியற் குழுவினர் <<அல்மா>> &  நோயிமா கருவிகள் மூலம் [ ALMA – ATACAMA Large Millimeter Array] &  [NOEMA –  Northern Extended Millimeter Array]  ரேடியோ தொலை நோக்கி வழியாக, நடந்த வெடிப்புக் காட்சி விளைவை [Known as CK Vulpeculae (CK -Vul)]  ஆய்வுகள் செய்ததில்  உறுதியாக கதிர்வீசும் அலுமீனியம் [26 AL]  [Radio Isotope of 26AL] இருப்பது அறியப் பட்டது.  அதாவது 26AL மூலகத்தின் கதிர்வீசும் ஏகமூலம் [13 புரோட்டான் + 13 நியூட்ரான்] ஃபுளோரின் [Fluorine] சேர்க்கையுடன், அலுமினியம் மானோ ஃபுளூரைடு [26ALIF] ஆகக் காணப்பட்டது.  இதுவே முதன்முதல் பூமிக்கு 2000 ஒளியாண்டு தூரத்தில், நமது சூரிய மண்டலம் கடந்த புற விண்வெளியில் காணப்பட்ட கதிரியக்க மூலக்கூறு [Radioactive Molecule] என்று வரலாற்று முதன்மை பெறுகிறது.
++++++++++++++++++

 luminosity-of-birth-star-1

 

http://slideplayer.com/slide/1374764/

பெருநிறை விண்மீன்கள் பிறப்பு இன்னும் மர்மமாகத் தெரிகிறது நமக்கு. காரணம் இந்த விண்மீன்கள் தீவிரமாய்த் திண்ணிய வாயுத் தூசிகள் ஈடுபாடு கொண்டவை.  இந்த ஒளிபுகாச் சூழ்புறம் [Opaque Envelope] நவீனத் தொலை நோக்கிகள் மூலம் ஆயும் நேரடி நோக்குதலுக்கும் கடினமாய் உள்ளது.  சொல்லப் போனால்,  இவ்வகை விண்மீன்கள் பிறக்கும் தாலாட்டு ஊஞ்சல் மட்டும் நமக்குத் தெரிகிறதே தவிர, அந்த விண்மீன்கள் தென்படு வதில்லை.

ரால்ஃப் கியூப்பர் [ Emmy Noether Research Group for Massive Star Formation, Germany]

protostar-formation

 

குளிர்தேசக் கணப்பு அடுப்பில் மரத் துண்டுகளை எறிந்தால் குப்பெனத் தீப்பற்றுவதுபோல், பெருநிறை விண்மீன்கள் எழுப்பும் தீவிரப் பேரொளி வெடிப்புகள்  நூறாயிரம் சூரியன்கள் உண்டாக்கும் கூட்டு ஒளிமயத்தைக் காட்டுகின்றன.  இம்மாதிரி ஒளி வெடிப்பு நிகழ்ச்சிகள், பிரபஞ்சத்தில் சிறுநிறை கொண்ட நமது சூரியன் போல், பூர்வப் பரிதிகள் தோன்றிய போதும் நேர்ந்துள்ளன.

எட்வேர்டு வொரோபையோவ் [ஜெர்மன் ஆய்வக அறக்கட்டளை]

Life cycle of a Massive Star

 

முன்னுரை:  பிரபஞ்சத்தில் சூப்பர்நோவா ஒன்று விளைவித்த கொந்தளிப்பில் அல்லது பளுமிக்க விண்மீன் ஒன்று வெடித்த கொந்தளிப்பில் புதிய விண்மீன் ஏற்பாடுகள் (New Star Systems) உருவாகுகின்றன. நமது சூரிய மண்டலமே பால்மய வீதி காலக்ஸியின் சுருள் ஆரத்தில் மரித்த ஒரு சூப்பர்நோவா வீசி எறிந்த மிச்சத்திலிருந்து தோன்றி யிருக்கலாம் என்று விஞ்ஞானிகள் ஒரு கோட்பாடை ஊகிக்கிறார்கள். சுமார் 5 பில்லியன் ஆண்டுகளுக்கு முன்பு அது வெளியேற்றிய கூண்டு விண்வெளியில் உலவி வீதி வழியே தூசி துணுக்குகளை வாரிக் கொண்டு, வழி நெடுவே திண்ணிய தீக்கனலுடன், எரியும் வாயுக்களில் நீல நிறத்தில் எக்ஸ்ரே கதிர்களை எழுப்பிக் கொண்டு சென்றது !

 luminosity-of-stars-1

 

பெருநிறை விண்மீன்கள் பிறக்கும்போது பேரொளி வெடிப்பு நேர்கிறது

பெருநிறை விண்மீன்களின் பிறப்பானது, வானியல் விஞ்ஞானி களுக்கு இன்னும் புதிராகவும், மர்மமாகவும் இருக்கிறது.  அதற்குக் காரணம் : அந்த வகை விண்மீன்கள் பேரடர்த்தி வாயுத் தூசிகள் கலந்த அரங்குகளில் அடைபட்டுக் கிடக்கின்றன.  அந்த ஒளிபுகாச் சூழக நிகழ்ச்சிகளை தொலை நோக்கிகள் மூலம் காண்பதும் கடினமாய் உள்ளது. இந்த விஞ்ஞான ஆய்வுகளில் ஈடுபட்டு வருவது, ஜெர்மன் ஆய்வு அறக்கட்டளை [GRB – German Research Foundation] [Emmy Noether Research Group for Massive Star Formation] தலைமை விஞ்ஞானி ரால்ஃப் கியூப்பர் [Rolf Kuiper].

ஜெர்மன் ஆய்வாளர் ஒரு கணினி இலக்கப் போலி மாடலில் [Computer Numerical Simulation] இட்டு அதன் விளைவுகள் வெளியிட்டுள்ளார்.  அதற்கு அதிகத் திறனுள்ள கணினிகள் [High Performance Computers]  பயன்படுத்தப் பட்டன.  அந்த மாடல்கள் சுய ஈர்ப்பியல் இறுக்கி அழுத்தப்படும் வாயுத் தூசி முகிலில் ஆரம்பமாகிறது.  அதுவே முடிவில் கொந்தளிக்கும் இளம்பரிதி ஒன்றைச் சுற்றிவரும் சுழற் தட்டாகி [Accretion Disk] உருவா கிறது.  அந்த சுழற் தட்டுப் பிண்டம் ஒரு மையப் பரிதியைச் சுற்றிவந்து, மெதுவாக வாயுத் தூசிகளை மையத்தை நோக்கி இழுக்கிறது.

[https://www.youtube.com/watch?v=9j1AKzICLts?version=3&rel=1&fs=1&autohide=2&showsearch=0&showinfo=1&iv_load_policy=1&wmode=transparent]

[https://www.youtube.com/watch?v=0wP5GPFALCg?version=3&rel=1&fs=1&autohide=2&showsearch=0&showinfo=1&iv_load_policy=1&wmode=transparent]

 

Life cycle of a Star

 

வெடிப்பு நிகழ்ந்து பல்லாயிரம் ஆண்டுகள் கழித்து வெடியலைகள், குளிர்ந்து போன கருமை முகிலோடு முட்டி முனையில் செந்நிற ஹைடிரஜன் மின்னிட மோதியது ! இந்தப் பின்புலத்திலே மோதலுக்குப் பிறகு வாயுக்கள் குளிர்ந்து திணிவும் (Density) உஷ்ணமும் மாறி பல்வேறு வண்ணப் பட்டைகள் (Muli-colour Bands) தெரிந்தன. குளிர்ந்து திரண்ட ஆரஞ்சு நிறத் திரட்டுகள் விண்மீனின் வடிவாயின ! சிதைவுக் குப்பைகள் ஈர்ப்பு ஆற்றலில் மேலும் அழுத்தமாக்கப் பட்டன. காலம் செல்லச் செல்ல ஈர்ப்பு விசையே வலுத்து வாயுக்களையும், தூசி துணுக்குகளையும் சுருக்கித் திரட்டி சுழற்றுத் தட்டுகளாய் ஆக்கின ! பிற்காலத்தில் அத்தட்டுகளே “முன்னோடி விண்மீன்களாகவும்”, முன்னோடிக் கோள்களாகவும் (Protostars & Protoplanets) விண்மீன் ஏற்பாடுகளுக்கு அடிப்படையாயின (Steller System Forerunners).

 

luminosity-of-stars-2

 

இந்திய அமெரிக்க வானியல் விஞ்ஞான மேதை சுப்ரமணியன் சந்திரசேகர் (1910-1995) விண்மீன்களின் தோற்ற பௌதிகத்தையும், கருந்துளைகள் (Black Holes) பற்றிய ஆராய்ச்சிகளையும் சிகாகோ பல்கலைக் கழகத்தில் பல்லாண்டுகள் செய்தவர். அவர் விண்மீன்களின் பளுவுக்கும் அவற்றின் சிதைவுக்கும் உள்ள தொடர்பைக் கண்டுபிடித்தார். ஒரு விண்மீனின் பளு சூரியனைப் போல் 1.4 மடங்கானால் அது சிதைவடைந்து மடியும் போது நியூட்ரான் விண்மீனாகவோ அல்லது ஒரு கருந்துளையாகவோ (Neutron Star or Black Hole) மாறிவிடும் என்று கூறினார். அந்தக் குறிப்பிட்ட 1.4 விகித எண்ணிக்கையே “சந்திரசேகர் வரம்பு” (Chandrasekher Limit) என்று வானியல் விஞ்ஞானிகளால் எடுத்துக் கொள்ளப்படுகிறது. மேலும் “வெண்குள்ளி” விண்மீன்களின் (White Dwarf Stars) பளு வரம்பையும், உள்ளமைப்பையும் சந்திரசேகர் விளக்கினார்.

 

luminosity-of-stars-3

 

விண்வெளியில் கண்சிமிட்டும் விண்மீன்களின் தோற்றமும் சிதைவும்!

பதினாறாம் நூற்றாண்டின் இறுதியில் வானியல் வல்லுநர்கள், மின்மினிபோல் வானிருளில் மினுமினுக்கும் விண்மீன்களைப் பரிதியின் பரம்பரைச் சேர்ந்த அண்டங்களோ என்று ஐயுற்றார்கள்! விண்மீன்களின் இடம்மாறிய பிம்பங்களை [Stellar Parallaxes] முதலாகக் கண்டு, 1838 இல் அந்த ஐயம் மெய்யான தென்று உறுதியானது. மேலும் அந்நிகழ்ச்சி விண்மீன்களின் இயற்கைத் தன்மைகளை ஆழ்ந்து அறிய அடிகோலியது. சுயவொளி வீசும் சூரிய வம்சத்தைப் போல் தோன்றினாலும், பல விண்மீன்கள் முற்றிலும் வேறுபட்டவை!

 

கோடான கோடி விண்மீன்களின் பிறந்தகமும், அழிவகமும் எல்லையற்ற பிரபஞ்சத்தில் பால்வீதி ஒளிமயத் திடலே [Milky Way Galaxy]! தோன்றிய எந்த விண்மீனும் அழியாமல் அப்படியே உருக்குலையாமல் வாழ்பவை அல்ல! பூமியில் பிறந்த மனிதர்களுக்கும், மற்ற உயிரினங்களுக்கும் எப்படி ஆயுட்காலம் என்று குறிக்கப் பட்டுள்ளதோ, அதே போன்று  அண்ட வெளியிலும் விண்மீன் ஒவ்வொன்றுக்கும் ஆயுட்காலம் தீர்மானிக்கப் பட்டுள்ளது! இதுவரைப் பத்து பில்லியன் ஆண்டுகள் விண்வெளியில் கண்சிமிட்டி வாழ்ந்து வந்த சில விண்மீன்கள், இன்னும் 100 பில்லியன் ஆண்டுகள் கழித்து அழிந்து போகலாம்! சில விண்மீன்கள் சூரியனை விடப் பலமடங்கு பெரியவை! சில வடிவத்தில் சிறியவை!

luminosity-of-stars

 

கொதிப்போடு கொந்தளிப்பவை சில! குளிர்ந்து கட்டியாய்த் திரண்டவை சில! ஒளிப் பிழம்பைக் கொட்டுபவை சில! ஒளி யிழந்து குருடாகிப் போனவை சில! பல பில்லியன் மைல் தூரத்தில் மினுமினுக்கும் விண்மீன்களைப் பற்றிய விஞ்ஞானிகளின் அறிவெல்லாம், அவற்றின் ஒளித்திரட்சிதைப் பார்த்து, ஒளிமாற்றத்தைப் பார்த்து, இடத்தைப் பார்த்து, இடமாற்றத்தைப் பார்த்து, ஒளிநிறப் பட்டையைப் [Light Spectrum] பார்த்துத், தமது பெளதிக ரசாயன விதிகளைப் பயன்படுத்திச் செய்து கொண்ட விளக்கங்களே!

ஒரு விண்மீன் தனது உடம்பைச் சிறிதளவு சிதைத்து வாயு முகிலை உமிழ்கிறது. அப்போது விண்மீன் முன்பு இருந்ததை விட 5000-10,000 மடங்கு ஒளி வீசுகிறது! அது நோவா விண்மீன் [Nova Star] என்று அழைக்கப்படுகிறது. சூப்பர்நோவா [Supernova] விண்மீன்கள் வெடிப்பில் சிதைவுற்றுச் சிறு துணுக்குகளை வெளியேற்றிச் சூரியனை விட 100 மில்லியன் மடங்கு ஒளிமயத்தைப் பெறுகின்றன. சூரிய குடும்பத்தின் அண்டங்களான புதன், வெள்ளி, பூமி, செவ்வாய், வியாழன், சனி போன்ற கோள்கள் ஒரு சூப்பர்நோவா வெடிப்பில் உண்டானவை என்றும், அவற்றைப் பின்னால் சூரியன் கவர்ந்து கொண்ட தாகவும் கருதப்படுகிறது!

 

Supernova & White Dwarf

பரிதியின் பளுவைப் போல் 1.4 மடங்கு [1.4 times Solar Mass] மேற்பட்ட விண்மீன் இறுதியில் ஒரு வெண்குள்ளியை [White Dwarf] உருவாக்குவ தில்லை என்று சந்திரசேகர் கூறினார். [வெண்குள்ளி என்பது பரிதியின் பளுவை (Mass) அடைந்து, அணுக்கருச் சக்தி யற்றுச் சிதைந்த விண்மீன் ஒன்றின் முடிவுக் கோலம். அது வடிவத்தில் சிறியது! ஆனால் அதன் திணிவு [Density] மிக மிக மிகையானது!] அதற்குப் பதிலாக அந்த விண்மீன் தொடர்ந்து சிதைவுற்று, சூப்பர்நோவா வெடிப்பில் [Supernova Explosion] பொங்கித் தனது வாயுக்களின் சூழ்வெளியை ஊதி அகற்றி, ஒரு நியூட்ரான் விண்மீனாக [Neutron Star] மாறுகிறது. பரிதியைப் போல் 10 மடங்கு பருத்த விண்மீன் ஒன்று, இன்னும் தொடர்ந்து நொறுங்கி, இறுதியில் ஒரு கருந்துளை [Black Hole] உண்டாகிறது. சந்திரசேகரின் இந்த மூன்று அறிவிப்புகளும் சூப்பர்நோவா, நியூட்ரான் விண்மீன், மற்றும் கருந்துளை ஆகியவற்றை விளக்கிப் பிரபஞ்சம் ஆதியில் தோன்றிய முறைகளைப் புரிந்து கொள்ள உதவுகின்றன.

 

 

சந்திரசேகரின் ஒப்பற்ற வாழ்க்கை வரலாறு

இந்தியராகப் பிறந்து அமெரிக்காவில் குடிபுகுந்த சுப்ரமணியன் சந்திரசேகர் பிரிட்டிஷ் இந்தியாவில் 1910 ஆம் ஆண்டு அக்டோபர் 19 இல் லாகூரில் அவதரித்தார். 1930 இல் பெளதிகத்திற்கு நோபெல் பரிசு பெற்று உலகப் புகழடைந்த விஞ்ஞானி ஸர் சி.வி. ராமனின் மருமான் [Nephew] சந்திரசேகர், என்பது இந்தியர் பலருக்குத் தெரியாது! தந்தையார் சுப்ரமணிய ஐயர் அரசாங்க நிதித்துறையகத்தில் வேலை பார்த்து வந்தார். தாயார் சீதா பாலகிருஷ்ணன் பிள்ளைகள் பிற்காலத்தில் பேரறிஞர்களாக வருவதற்கு ஊக்கம் அளித்தவர். பத்துக் குழந்தைகளில் சந்திரசேகர் மூன்றாவதாகப் பிறந்த முதற் பையன்! 1918 இல் தந்தையார் சென்னைக்கு மாற்றலானதும், சந்திரசேகர் சென்னை ஹிந்து உயர்நிலைப் பள்ளியில் சேர்ந்து [1922-1925] படித்துச் சிறப்பாகச் தேர்ச்சி அடைந்தார்.

 

Star Life cycle

பிறகு பெரியப்பா சி.வி. ராமன் அவர்களைப் பின்பற்றிச் சென்னை பிரிசிடென்ஸிக் கல்லூரியில் படித்து, 1930 இல் மெட்ராஸ் பல்கலைக் கழகத்தில் B.Sc. பட்டதாரி ஆனார். கல்லூரியில் சிறப்புயர்ச்சி பெற்று முதலாகத் தேறியதால், அரசாங்கம் அவர் மேற்படிப்புக்கு இங்கிலாந்து செல்ல உதவிநிதிப் பரிசளித்தது. அங்கே கேம்பிரிடிஜ் பல்கலைக் கழகத்தின் டிரினிடிக் கல்லூரியில் படித்துப் 1933 இல் பெளதிகத்தில் Ph.D. பட்டத்தைப் பெற்றார். 1936 செப்டம்பரில் கல்லூரியில் சந்தித்துக் காதல் கொண்ட லலிதா துரைசாமியை மணந்து கொண்டார். கேம்பிரிட்ஜில் ஸர் ஆர்தர் எடிங்டன் [Sir Arthur Eddington], மில்னே [E.A. Milne] போன்ற புகழ் பெற்ற வானியல் வல்லுநர்களின் நட்பைத் தேடிக் கொண்டார்.

 

Sun’s Evolutionary Tracks

அதற்குப் பிறகு சிகாகோ பல்கலைக் கழகத்தில் 1937 இல் ஆய்வுத் துணையாளர் [Research Assistant] பதவியை ஒப்புக் கொண்டு, அமெரிக்காவுக்குச் சென்றார். 1938 இல் சந்திரசேகர் வானியல் பெளதிக [Astrophysics] உதவிப் பேராசிரியராகி, ஒப்பற்ற வானியல் பெளதிகப் பேராசிரியர் மார்டன் ஹல் [Morton Hull] அவர்களின் கீழ் பணியாற்றினார். அவர் பணி யாற்றிய இடம் விஸ்கான்சின், எர்க்ஸ் வானியல் நோக்ககம் [Yerks Observatory, Williams Bay, Wisconsin]. சந்திரசேகர் 1953 இல் அமெரிக்கப் பிரஜையாக மாறினார். 1952 ஆம் ஆண்டு பேராசிரியர் ஆக்கப் பட்டுப் பல ஆண்டுகள் வேலை செய்து, ஓய்வுக்குப் பின்பு கெளரவப் பேராசிரிய ராகவும் 1986 வரை அங்கே இருந்தார். சந்திரசேகர் வானியல் ஆராய்ச்சிகள் செய்து வெளியிட்ட, விண்மீன் தோற்றத்தின் இறுதி நிலைக் கோட்பாடு [Theory on the Later Stages of Stellar Evolution] என்னும் பெளதிகப் படைப்பிற்கு 1983 இல் நோபெல் பரிசை, அமெரிக்க விஞ்ஞானி வில்லியம் ·பவ்லருடன் [William Fowler] பகிர்ந்து கொண்டார். அந்தக் கோட்பாடு அண்டவெளியில் நியூட்ரான் விண்மீன்கள் [Neutron Stars]. கருந்துளைகள் [Black Holes] ஆகியவற்றைக் கண்டு பிடிக்க உதவியது.

 

H-R Diagram

அண்டவெளியில் சூப்பர்நோவா, வெண்குள்ளி விண்மீன்கள்

இருபதாம் நூற்றாண்டின் துவக்கத்தில் டேனிஸ் விஞ்ஞானி ஐஞ்சர் ஹெர்ட்ஸ்புருங் [Einjar Hertzsprung] அமெரிக்க விஞ்ஞானி ஹென்ரி ரஸ்ஸெல் [Henri Russell] இருவரும் முதன் முதல் விண்மீன்களின் ஒளிவீச்சையும், உஷ்ணத்தையும் சேகரித்து, ஒரு வரைப்படத்தில்

புள்ளியிட்டு அவற்றின் இணைச் சார்புகளைக் காட்டினார்கள். அந்த ஹெர்ட்ஸ்ப்ருங்-ரஸ்ஸெல் [Hertzsprung-Russell, H-R Diagram] வரைப்படமே வானியல் பெளதிகத்தில் விண்மீன்களின் தன்மைகளை எடுத்துக் காட்டும் ஒரு முக்கிய ஒப்புநோக்கு வரைப்பட மாகப் பயன்படுகிறது. ஒளித் திரட்சியை நேரச்சிலும் [Luminosity in Y-Axis], உஷ்ணத்தைக் மட்ட அச்சிலும் [Temperature in X-Axis] குறித்து, ஆயிரக் கணக்கான விண்மீன் களின் இடங்களைப் புள்ளி யிட்டுக் காட்டப் பட்டுள்ளது. ஹைடிரஜன் 10% கொள்ளளவுக்கும் குறைந்து எரிந்த பெரும்பான்மையான விண்மீன்கள் முதலக வீதியில் [Main Sequence] இடம் பெற்றன. ஒளிமிக்க விண்மீன்கள் இக்கோட்டுக்கு மேலும், ஒளி குன்றியவை கோட்டுக்குக் கீழும் குறிக்கப் பட்டன. பேரொளி வீசுவதற்கு விண்மீன் பெருத்த பரப்பளவு கொண்டிருக்க வேண்டும்! அவைதான் பெரும் பூத விண்மீன்கள் [Super Giants] ! அவற்றுக்கும் சிறியவைப் பூத விண்மீன்கள் [Giant Stars]! பிறகு வாயுக்கள் எரிந்து எரிந்து அவைச் செந்நிறப் பூதங்களாய் [Red Giants] மாறுகின்றன! போகப் போக வாயு விரைவில் காலி செய்யப் பட்டு, ஈர்ப்பு விசையால் குறுகி விண்மீன்கள் வெண்குள்ளியாய் [White Dwarfs] சிதைவாகின்றன.

 

Supergiants & White Dwarfs

பல பில்லியன் ஆண்டுகளுக்குப் பிறகுப் பரிதியும், ஒரு வெண்குள்ளியாகச் சிதைவடைந்து மடியப் போவதாய்க் கருதப் படுகிறது! அவ்வாறு நிகழ்ந்தால் அது ஒரு செந்நிறப் பூதமாகி [Red Giant] புதன், வெள்ளி ஆகிய இரு கோள்களை வெப்பக்கடலில் மூழ்க்கி, அடுத்து பூமியின் வாயு மண்டலத்தை ஊதி வெளியேற்றிக், கடல்நீரைக் கொதித்துப் பொங்க வைத்து, உயிரினம் யாவும் மடிந்து மீண்டும் எதுவும் வாழ முடியாத வண்ணம், பூமி ஓர் நிரந்தர மயான கோளமாய் மாறிவிடும்! ஏறக்குறைய முழுப்பகுதி ஹைடிரஜன் வாயுள்ள விண்மீன், ஈர்ப்பு விசையால் பேரளவில் அமுக்கப் பட்டுச் சுருங்கி உண்டானது. வாயுக்கள் கணிக்க முடியாத பேரழுத்தத்தில் பிணைந்து, பல மில்லியன் டிகிரி உஷ்ணம் உண்டாகி, வெப்ப அணுக்கரு இயக்கம் [Thermonuclear Reaction] தூண்டப்பட்டு அவை ஹீலியமாக மாறுகின்றன. அந்த நிகழ்ச்சியின் போது அளவற்ற வெப்பமும், வெளிச்சமும் எழுந்து பிணைவு இயக்கம் [Sustained Fusion Reaction] தொடர்கிறது!

1930 ஆரம்ப ஆண்டுகளில் விஞ்ஞானிகள், ஹைடிரஜன் சேமிப்பு யாவும் எரிந்து ஹீலியமாகி வற்றியதும் விண்மீன்கள் சக்தி வெளியீட்டை இழந்து, தமது ஈர்ப்பு ஆற்றலால் அமுக்கப் பட்டுக் குறுகி விடுகின்றன என்று கண்டார்கள். பூமியின் வடிவுக்குக் குன்றிப் போகும் இவையே வெண்குள்ளிகள் [White Dwarfs] என்று அழைக்கப் படுபவை. வெண்குள்ளி கொண்டுள்ள அணுக்களின் எலக்டிரான்களும் அணுக்கருத் துகள்களும் [Nuclei] மிக மிகப் பேரளவுத் திணிவில் [Extremely High Density] அழுத்தமாய் இறுக்கப் பட்டு, எண்ணிக்கை மதிப்பில் நீரைப் போல் 100,000-1000,000 மடங்கு அதன் திணிவு ஏறுகிறது என்று பின்னால் கணிக்கப் பட்டுள்ளது!

 

Structure of a Star

சந்திரசேகர் எழுதிய விண்மீன் அமைப்பின் முதற்படி ஆய்வு

சந்திரசேகரின் சிறப்பு மிக்க ஆக்கங்கள் விண்மீன்களின் தோற்ற மூலம் [Evolution of Stars], அவற்றின் அமைப்பு [Structure] மற்றும் அவற்றுள் சக்தி இயக்கங்களின் போக்கு [Process of Energy Transfer], முடிவில் விண்மீன் களின் அழிவு ஆகியவற்றைப் பற்றியது. வெண்குள்ளிகளைப் [White Dwarfs] பற்றிய அவரது கோட்பாடு, பிரிட்டிஷ் விஞ்ஞானிகள் ரால்·ப் பவ்லர் [Ralph Fowler], ஆர்தர் எடிங்டன் [Arthur Eddington] ஆகிய இருவரும் தொடங்கிய வினையைப் பின்பற்றி மேற்கொண்டு விருத்தி செய்தது.

சிதைவுப் பண்டங்கள் [Degenerate Matter] சேர்ந்து பேரளவுத் திணிவு [Extremely High Density] பெருத்த வெண்குள்ளியில், எலக்டிரான்களும் அணுக்கருத் துகள் மின்னிகளும் [Ionized Nuclei], விண்மீனின் ஈர்ப்பு விசையால் இறுக்கிப் பிழியப் படுகின்றன என்று 1926 இல் ரால்ஃப் பவ்லர் விளக்கிக் கூறினார்.

Image result for subramanian chandrasekher

அதே ஆண்டு ஆர்தர் எடிங்டன் ஹைடிரஜன் அணுக்கருக்கள் பிணைந்து ஹீலியமாக மாறி, சக்தியைச் சுரக்கும் மூலமாக விண்மீன்களில் இருக்கலாம் என்று எடுத்துக் கூறினார். சந்திரசேகர் தனது ‘விண்மீன் அமைப்பின் முதற்படி ஆய்வு ‘ [An Introduction to the Study of Stellar Structure] என்னும் நூலில், விண்மீன் தனது எரிவாயுவான ஹைடிரஜன் தீரத் தீர முன்னைப்போல் ஒளிக்கதிர் வீசத் தகுதி யற்று, அதன் ஈர்ப்பு விசை சிறுகச் சிறுக அதே விகிதத்தில் குன்றிச் சுருங்குகிறது என்று எழுதியுள்ளார். ஓர் அண்டத்தின் ஈர்ப்பு விசை அதன் பளுவைச் [Mass] சார்ந்து நேர் விகிதத்தில் மாறுகிறது! பளு குன்றினால், அண்டத்தின் ஈர்ப்பு விசையும் குறைகிறது! ஈர்ப்பு விசைச் சுருக்கத்தின் [Gravitational Collapse] போது, விண்மீனின் பளு ஒப்புமை நிலைப்பாடு [Relatively Constant] உள்ளது என்று சந்திரசேகர் அனுமானித்துக் கொண்டார். அந்தச் சுருக்கத்தை நிறைவு செய்ய, பேரமுக்க முள்ள எலக்டிரான்கள் [Highly Compressed Electrons] பொங்கி எழுந்து, விண்மீன் நொறுங்கிச் சிதைவடைந்து, சிறுத்துப்போய் முடிவில் வெண்குள்ளியாக [White Dwarf] மாறுகிறது என்பது அவர் கருத்து!

 

What is a White Dwarf ?

சந்திரசேகர் ஆக்கிய வெண்குள்ளிக் கோட்பாடு கூறுவது என்ன ?

1936 முதல் 1939 வரை சந்திரசேகர் வெண்குள்ளிகளின் கோட்பாட்டை [Theory of White Dwarfs] உருவாக்கினார். அந்தக் கோட்பாடு வெண்குள்ளியின் ஆரம், பளுவுக்கு எதிர்விகிதத்தில் மாறுவதாக [Radius is inversely proportional to Mass] முன்னறிவிக்கிறது! பரிதியின் பளுவை விட 1.4 மடங்கு பெருத்த எந்த விண்மீனும் வெண்குள்ளியாக மாற முடியாது! வெண்குள்ளியா சிதைவடை வதற்கு முன்பு பரிதியின் பளுவை விட 1.4 மடங்கு மிகுந்த விண்மீன்கள் தமது மிஞ்சிய பளுவை, முதலில் நோவா வெடிப்பில் [Nova Explosion] இழக்க வேண்டும்! சந்திரசேகரின் மேற்கூறிய மூன்று முன்னறிவிப்புகளும் மெய்யான விதிகள் என்று விஞ்ஞானிகள் உறுதிப்பாடு செய்துள்ளனர்! ஏற்கனவே தெரிந்த ஒரு வெண்குள்ளிகளின் சரிதையைத் தவிர, இவற்றைத் தொலை நோக்குக் கருவிகள் மூலம் கண்டு ஒருவர் நிரூபிப்பது மிகவும் கடினம்! வானியல் வல்லுநர்கள் இதுவரை அறிந்த எந்த வெண்குள்ளியும் நிறையில் 1.4 மடங்கு பரிதியின் பளுவை மிஞ்சி யுள்ளதாகக் காணப்பட வில்லை! விண்மீன்களின் நிறையை இனம் பிரித்திடும் அந்த வரையரைப் பளு எண்ணைச் [1.4] ‘சந்திரசேகர் வரம்பு ‘ [Chandrasekar Limit] என்று வானியல் விஞ்ஞானம் குறிப்பிடுகிறது.

 

Red Giant turning to White Dwarf

ஆல்பர்ட் ஐன்ஸ்டைன் ஆக்கிய சிறப்பு ஒப்பியல் நியதி [Special Theory of Relativity] மற்றும் குவாண்டம் பெளதிகக் கோட்பாடு [Principles of Quantum Physics] ஆகிய இரண்டையும் பயன்படுத்திச் சந்திரசேகர், ஓர் அறிவிப்பை வெளியிட்டார். ‘பரிதியின் பளுவைப் போல் 1.4 மடங்கு நிறை யுடைய ஒரு வெண்குள்ளி விண்மீன், சிதைவுற்ற வாயுவில் உள்ள எலக்டிரான்களின் உதவியை மட்டும் கொண்டு நிலைப்பாடு கொள்ள முடியாது. அப்படிப் பட்ட ஒரு விண்மீன் தனது வெப்ப அணுக்கரு எரு [Thermonuclear fuel] முழுதையும் எரித்துத் தீர்க்கா விட்டால், அதன் பளு சந்திரசேகர் வரம்பை விடவும் மிகையானது என்று அறிந்து கொள்ள வேண்டும்’.

தொலைநோக்கியில் காணப் பட்ட மெய்யான வெண்குள்ளி விண்மீன்களின் பளுவைக் கணித்ததில், அவை யாவும் சந்திரசேகர் வரம்புக்குக் [1.4] குறைந்த தாகவே அறியப் பட்டன! அந்த வரம்புக்கு மேற்பட்ட பளுவை உடைய விண்மீன், தனது அணுக்கரு எரிப்புக் காலம் [Nuclear-Burning Lifetime] ஓய்ந்தபின், ஒரு வேளை நியூட்ரான் விண்மீனாக [Neutron Star] ஆகலாம்! அல்லது ஒரு கருந்துளையாக [Black Hole] மாறலாம்! சந்திரசேகர் ஆராய்ந்து வெளியிட்ட வானியல் சாதனைகள் விண்மீன்களின் இறுதி ஆயுள் நிலையை எடுத்துக் காட்ட உதவி செய்கின்றன. மேலும் ஏறக் குறைய எல்லா விண்மீன்களின் பளுக்களும் சந்திரசேகர் வரம்பு நிறைக்குள் அடங்கி விட்டதால், அகில வெளியில் பூதநோவாக்கள் [Supernovas] எதுவும் இல்லாமைக் காட்டுகின்றன. [நோவா என்பது உள்ளணுக்கரு வெடிப்பு (Internal Nuclear Explosion) ஏற்பட்டுப் பேரளவில் சக்தியை மிகைப்படுத்தி வெளியாக்கும், ஒரு விண்மீன்].

 

Star turning to Black Dwarf

ஈர்ப்பியல் நொறுங்கலில் தோன்றும் கருந்துளைகள்!

1968 இல் கருந்துளை என்று முதன் முதலில் பெயரிட்டவர், அமெரிக்க விஞ்ஞானி ஆர்ச்சிபால்டு வீலர் [Archibald Wheeler]. ஆயினும் அவருக்கும் முன்பே கருந்துளையைப் பற்றிப் பதினெட்டாம் நூற்றாண்டில் பிரிட்டிஷ் வேதாந்தி [John Mitchell (1783)], மற்றும் பிரென்ச் கணித வல்லுநர் பியரி ஸைமன் லாபிளாஸ் [Piere Simon de Laplace (1796)] ஆகியோர் இருவரும் கருந்துளையின் அடிப்படைக் கோட்பாடுகளைப் பற்றி எழுதியுள்ளார்கள்.

கருந்துளை [Black Hole] என்பது விண்வெளியில் பேரடர்த்தி [Highly Dense] கொண்டு, நியதிப்படி இருப்பதாகக் கற்பனிக்கப் பட்ட ஓர் அண்டம்! அகில வெளியில் ஈர்ப்பு விசைப் பேராற்றலுடன் உட்புறம் இழுத்துக் கொண்டிருக்கும் ஓர் குழிப் பகுதி. அப்பகுதியில் எதுவும், ஏன் ஒளிக்கதிர் வீச்சு, மின் காந்தக் கதிர்வீச்சு [Electromagnetic Radiation] கூட அதன் அருகே நெருங்க முடியாது!

star-formation-cycle

ஒளிமந்தை விண்மீன்கள் தோற்றம்

அதன் அருகே புகும் ஒளிக்கதிர்கள் நேராகச் செல்ல முடியாமல் வளைக்கப் படும்; அல்லது ஈர்ப்பு மையத்துக் குள்ளே கவர்ந்து இழுக்கப் படும்! ஆகவே கருந்துளையின் பக்கம் ஒளி செல்ல முடியாத தால், அதன் இருப்பிடத்தைத் தொலை நோக்கி மூலம் காண்பது அரிது! கருங்குழியிலிருந்து எழும் எக்ஸ்ரே கதிர்களை [X-Rays], பூமியில் உள்ள வானலை நோக்கிகள் [Radio Telescopes] நுகர்ந்து கண்டு பிடிக்க முடியும். பபெருத்த ஒரு விண்மீன் தனது எரிபொருள் யாவும் தீர்ந்த பின், அதன் நிறையால் சிதைந்து, ஈர்ப்பாற்றல் [Gravitation] மிகுந்து அதன் உருவம் குறுகிக் கருந்துளைஉண்டாகிறது! அதன் வடிவம் ஒரு வளைவான கோள விளிம்பில் [Spherical Boundary] சூழப் பட்டுள்ளது. அந்தக் கோள விளிம்பின் ஊடே ஒளி நுழையலாம். ஆனால் தப்ப முடியாது! ஆதலால் அது முழுக்க முழுக்கக் கருமை அண்டமாக இருக்கிறது. ஈர்ப்பியல் நொறுங்கல் [Gravitation Collapse] நிகழ்ச்சி ஆக்கவும் செய்யும்! அன்றி அழிக்கவும் செய்யும்! ஒரு விண்வெளி அண்டத்தில் அல்லது விண்மீன் கோளத்தில் ஈர்ப்பாற்றல் விளைவிக்கும் உள்நோக்கிய சிதைவை ஈர்ப்பியல் நொறுங்கல் என்று வானியல் விஞ்ஞானத்தில் கூறப்படுகிறது. அண்டவெளிக் கோள்களும், விண்மீன்களும் ஈர்ப்பியல் நொறுங்கல் நிகழ்ச்சி யால் உருவாக்கப் படலாம்; அல்லது அவை முழுவதும் அழிக்கப் படலாம்.

 

our-sun

Star Structure

சிறு விண்மீன்களில் நிகழும் ஈர்ப்பியல் சிதைவுகள்

சில சிறு விண்மீன்களில் இந்த ஈர்ப்பியல் நொறுங்கல் மெதுவாக நிகழ்கிறது! சில காலத்திற்குப் பிறகு நின்று விடுகிறது! வெப்பம் படிப்படியாகக் குறைந்து, விண்மீன் வெளிச்சம் மங்கிக் கொண்டே போகிறது! வானியல் நோக்காளர்கள் அந்த மங்கிய விண்மீனையும் தொலைநோக்கி மூலம் காணலாம்! அவைதான் வெண்குள்ளிகள் [White Dwarfs] என்று அழைக்கப் படுகின்றன. நமது சூரியனும் உதாரணமாக பல பில்லியன் ஆண்டுகளுக்குப் பின்பு ஒரு வெண்குள்ளியாகத்தான் தனது வாழ்வை முடித்துக் கொள்ளப் போகிறது!

சில சமயங்களில் இறுதி நொறுங்கல் [Final Collapse] விண்மீனில் ஹைடிரஜன், ஹீலியம் ஆகியவற்றை விடக் கனமான மூலகங்களில் [Heavier Elements] திடீரென அணுக்கரு இயக்கங்களைத் தூண்டி விடலாம்! பிறகு அவ்வணுக்கரு இயக்கங்களே சூப்பர்நோவாவாக [Supernova] வெடித்து ஆயிரம் ஒளிமயக் காட்சிகளை [Galaxies] விட பேரொளி வீசக் காரண மாகலாம்! ஓராண்டுக்குப் பிறகு பேரொளி மங்கி, பரவும் முகில் வாயுக்கள் கிளம்பி, மூல விண்மீனின் நடுக்கரு [Core] மட்டும் மிஞ்சுகிறது! அம்முகில் பயணம் செய்து, அடுத்து மற்ற அகில முகிலோடு கலந்து, ஈர்ப்பியல் நொறுங்கலில் புதிய ஒரு விண்மீனை உண்டாக்கும்! எஞ்சிய நடுக்கரு பேரளவுத் திணிவில் [Extremely Dense] இறுகி வெப்பமும், வெளிச்சமும் அளிக்க எரிப்பண்டம் இல்லாது, முடமான நியூட்ரான் விண்மீனாய் [Neutron Star] மாறுகிறது!

 

Steller Formation seen By Hubble Telescope

நியூட்ரான் விண்மீன் முதல் நூறாயிரம் ஆண்டுகள் வானலைக் கதிர்க் கற்றைகளை [Beams of Radio Waves] வெளியாக்கி, விண்மீன் சுற்றும் போது கதிர்கள் பூமியில் உள்ள வானலைத் தொலைநோக்கியில் துடிப்புகளை [Pulses] உண்டாக்குகின்றன! ஓர் இளைய நியூட்ரான் விண்மீன் துடிப்பி [Pulsar] என்றும் குறிப்பிடப்படுகிறது. துடிப்பியின் குறுக்களவு சுமார் 9 மைல்! ஆயினும் அதன் பளு பிரம்மாண்டமான நமது பரிதியின் நிறைக்கு ஒத்ததாகும்!

பூத விண்மீனில் நிகழும் ஈர்ப்பியல் சிதைவு ! கருந்துளைகள் !

பேரளவு பளு மிகுந்த ஒரு விண்மீன் சிதையும் போது அழுத்தமோ, அணுக்கரு வெடிப்போ இறுதி நொறுங்கலை நிறுத்துவ தில்லை! அந்த விண்மீனின் ஆரம் [Radius] சிறுக்கும் போது, அதன் விளிம்பின் வளைவில் ஈர்ப்பு விசைப் பெருக்கம் அடைகிறது!

 

Star formation process

முடிவில் ஆரம் மிகச் சிறியதாகி, ஈர்ப்பு விசை பிரம்மாண்ட மாகி, விளிம்பின் வளைவு உள்நோக்கி இழுக்கப்பட்டு கருந்துளை உண்டாகிறது! அப்போது கருந்துளையின் அருகே ஒளிக்கதிர் சென்றால் அது வளைக்கப் பட்டு, உள்நோக்கி இழுக்கப் பட்டு விழுங்கப் படுகிறது!

ஒளிக்கதிர் யாவும் விழுங்கப் படுவதால் கருந்துளையைத் தொலை நோக்கியில் காண முடியாது! கருந்துளை பிரபஞ்சத்தில் இன்னும் ஓர் மர்ம அண்டமாய், மாய வடிவத்தில் இருக்கிறது. நமது ஒளிமய வானிலும் [Galaxy] பால்மய வீதியிலும் [Milky Way], எண்ணற்ற கருந்துளைகள் இருக்கலாம்! ஆனால் இதுவரை யாரும் அவற்றின் இருக்கையைக் கண்டு பிடித்து உறுதிப் படுத்தியதில்லை! கருந்துளையின் அளவு அதன் உட்பளுவைப் பொறுத்து நேர் விகிதத்தில் மாறுகிறது. நமது பரிதியின் பளுவைக் கொண்டுள்ள ஒரு கருந்துளையின் ஆரம் சுமார் 1 மைல் [1.5 km] இருக்கும் என்று கணிக்கப் பட்டுள்ளது! ஆனால் மற்ற ஒளிமய மந்தைகளில் [Other Galaxies] கருந்துளைகளை விஞ்ஞானிகள் கண்டிருப்பதாக நம்பப்படுகிறது!

 

The Spinning Black Hole

பிரபஞ்சத்தில் வெண்குள்ளி இறுதியில் கருங்குள்ளி ஆகிறது

செந்நிறப் பூத [Red Giant] நிலையிலிருந்து விண்மீன் முடிவான வடிவுக்குத் தளர்வது ஒரு நேரடிப் பாதை!  குன்றிய பளுவுடைய விண்மீன்கள் பலவற்றில், பரந்த வெளிப்புற அரண் அண்டவெளியில் விரிந்து கொண்டே போக, அவற்றின் நடுக்கரு மட்டும் ஒளித்திறம் [Luminosity] வற்றி வெண்குள்ளியாய் தங்கி விடுகிறது. பல மடங்கு பரிதி நிறை கொண்டுள்ள விண்மீன்கள் பெருநோவா வாக [Supernova] வெடித்து விடும். அவற்றிலும் சந்திரசேகர் வரம்புக்கு [1.4 மடங்கு பரிதியின் பளு] உட்பட்ட நடுக்கரு மிச்ச அண்டமும் வெண்குள்ளி யாக மாறும். அவ்வாறு உண்டான வெண்குள்ளியில் தாய்மூலக அணுக்களிலிருந்து [Parent Atoms] எலக்டிரான் யாவும் பிடுங்கப் பட்டு, அதன் பிண்டம் [Matter]அனைத்தும் சிதைவான வாயுவாகத் [Degenerate Gas] திரிவடைகின்றது! அந்த விபரீத வாய்க்கள் வெப்பக் கடத்தி யாகி, பொதுவான வாயு நியதிகளைப் [Gas Laws] பின்பற்றுவ தில்லை! அவ்வாயுக்கள் பேரளவு நிலையில் அழுத்தம் அடையலாம்! அவற்றைப் போன்ற வெண்குள்ளிகள் சக்தி அளிக்கும் சுரப்பிகள் எவையும் இல்லாமல், நிரந்தரமாய்க் குளிர்ந்து, அடுத்து மஞ்சல்குள்ளியாகி [Yellow Dwarf], பிறகு செங்குள்ளியாகி [Red Dwarf], அப்புறம் பழுப்புக்குள்ளியாகி [Brown Dwarf] இறுதியில் முடிவான கருங்குள்ளியாக [Black Dwarf] கண்ணுக்குத் தெரியாமல் இருந்தும் இல்லாத உருவெடுக்கிறது!

 

Supernova turning to a Black Hole

சந்திரசேகர் எழுதிய வானியல் விஞ்ஞான நூல்கள்

1952 முதல் 1971 வரை வானியல் பெளதிக வெளியீடு [Astrophysics Journal] விஞ்ஞானப் பதிவின் ஆசிரிய அதிபராகப் [Managing Editor] பணி யாற்றினார். பிறகு அந்த வெளியீடே அமெரிக்க வானியல் பேரவையின் [American Astronomical Society] தேசீய இதழாய் ஆனது. 1953 இல் ஆண்டு ராயல் வானியல் பேரவை [Royal Astronomical Society] சந்திரசேகருக்குத் தங்கப் பதக்கம் அளித்தது. 1955 ஆம் ஆண்டு தேசீய விஞ்ஞானப் பேரவைக்குத் [National Academy of Science] தேர்ந்தெடுக்கப் பட்டார். சந்திரசேகர் பத்து நூல்களை எழுதியுள்ளார். விண்மீன் சூழகத்தில் கதிர்வீச்சால் நிகழும் சக்தி கடத்தல் [Energy Transfer By Radiation in Stellar Atmospheres], பரிதியின் மேல்தளத்தில் வெப்பச் சுற்றோட்டம் [Convection in Solar Surface], விண்மீன் அமைப்பின் முதற்படி ஆய்வு [An Introduction to the Study of Stellar Structure (1939)], விண்மீன் கொந்தளிப்பின் கோட்பாடுகள் [Priciples of Stellar Dynamics

(1942)], கதிர்வீச்சுக் கடத்தல் [Radiative Transfer (1950)], திரவ இயக்க & திரவ காந்தவியல் நிலைப்பாடு [Hydrodynamic & Hydromagnetic Stability (1961)], கருங்குழிகளி கணித நியதி [Mathematical Theory of Black Holes (1983)]. மெய்ப்பாடும் எழிலும் [Truth & Beauty], விஞ்ஞானத்தில் கலைத்துமும் வேட்கையும் [Aesthetics & Motivation in Science (1987)]. விண்மீன் ஒளியின் இருமட்ட இயக்கம் [The Polarization of Starlight], காந்த தளங்களில் வெப்பச் சுற்றோட்ட வாயுக்கள் [Convection of Fluids in Magnetic Fields].

Solar Sytem formation

1999 ஆம் ஆண்டு ஏவப்பட்ட மனிதரற்ற விஞ்ஞானத் துணைக்கோள் [Premier Unmanned Scientific Satellite] ஓர் எக்ஸ்ரே நோக்ககத்தைக் [X-Ray Observatory] கொண்டது. அது ஒரு முற்போக்கான எக்ஸ்ரே வானியல் பெளதிக ஆய்வுச் சாதனம் [Advanced X-Ray Astrophysics Facility]. “சந்திரா எக்ஸ்ரே நோக்ககம்” என அழைக்கப்படும் அந்த துணைக்கோள், இந்திய அமெரிக்க வானியல் மேதை, சுப்ரமணியன் சந்திரசேகரைக் கெளரவிக்க வைத்த பெயராகும். அத்துணைக்கோள் எக்ஸ்ரேக் கதிர்கள் எழுப்பும் விண்மீன்களின் கூர்மையான ஒளிநிறப் பட்டைகளை எடுத்துக் காட்டும். அது பூமியின் சுழல்வீதியில் சுற்ற ஆரம்பித்ததும், ஒரு நண்டு நிபுளாவின் பொறிவீசி விண்மீனையும் [Pulsar in Crab Nebula], காஸ்ஸியோப்பியா பூதநோவாவையும் [Cassiopeia A Supernova] படமெடுத்து அனுப்பியுள்ளது.

 

Image result for subramanian chandrasekher

 

சந்திரசேகர் தனது 84 ஆம் வயதில் அமெரிக்காவின் சிகாகோ நகரில் 1995 ஆம் ஆண்டு ஆகஸ்டு 21 ஆம் தேதி காலமானார். இறப்பதற்கு முன் 1995 இல் அவர் எழுதிய இறுதிப் புத்தகம்: ‘பொது நபருக்கு நியூட்டனின் கோட்பாடு’ [Newton ‘Principia’ for the Common Reader]. அவரிடம் படித்த இரண்டு சைனா பெளதிக விஞ்ஞானிகள் [Tsung-Dao Lee, Chen Ning Yang] 1957 இல் துகள் பெளதிகத்திற்கு [Particle Physics] நோபெல் பரிசு பெற்றார்கள்! இரண்டாம் உலகப் போர் நடந்த போது, சந்திரசேகர் அணுகுண்டு ஆக்கத் திட்டத்தில் சிகாகோவில் முதல் அணுக்கருத் தொடரியக்கம் புரிந்த இத்தாலிய விஞ்ஞானி என்ரிகோ ஃபெர்மியோடு [Enrico Fermi] பணியாற்றினார்! குலவித்தைக் கல்லாமல் பாகம்படும் என்னும் முதுமொழிக் கேற்ப நோபெல் பரிசு பெற்று உலகப் புகழ் அடைந்த ஸர். சி.வி. ராமனின் வழித்தோன்றலான, டாக்டர் சந்திரசேகர் வானியல் விஞ்ஞானப் படைப்பிற்கு பெளதிகத்தில் நோபெல் பரிசைப் பகிர்ந்து கொண்டதும் போற்ற தகுந்த ஆற்றலாகும்!

++++++++++++++++++

தகவல்:

1. Astronomy’s Explore the Universe 8th Edition (2002) December 31, 2001

2. National Geographic Magazine (1982) Frontiers of Science The Family of the Sun By: Bradford Smith Ph. D. Professor of Planetary Sciences, The University of Arizona.

3. National Geographic Magazine (1975) Amazing Universe, The Family of Stars By: Herbert Friedman.

4. Internet Article “Stellar Evolution”

5. http://www.nasa.gov/audience/forstudents/9-12/features/stellar_evol_feat_912.html

6. http://ezinearticles.com/?A-Star-From-Birth-to-Death&id=8981207  [April 1, 2015]

7.  http://sc663drk.weebly.com/birth-and-death-of-the-stars.html

8.  https://www.khanacademy.org/science/cosmology-and-astronomy/stellar-life-topic/stellar-life-death-tutorial/v/birth-of-stars

9.  http://www.esa.int/esaKIDSen/SEM976WJD1E_OurUniverse_0.html

10.  http://science.nasa.gov/astrophysics/focus-areas/how-do-stars-form-and-evolve/

11. http://www.innovations-report.com/html/reports/physics-astronomy/the-birth-of-massive-stars-is-accompanied-by-strong-luminosity-bursts.html [November 7, 2016]

12. https://www.sciencedaily.com/releases/2016/11/161107112423.htm  [November 7, 2016]

13. http://phys.org/news/2016-11-birth-massive-stars-accompanied-strong.html  [November 7, 2016]

14.  https://en.wikipedia.org/wiki/Star  [November 6, 2016]

15.  https://www.eurekalert.org/pub_releases/2016-11/uov-tbo110716.php  [November 7, 2016]

16. https://phys.org/news/2018-07-pair-colliding-stars-radioactive-molecules.html [July 30, 2018]

17.  https://phys.org/news/2018-07-pair-colliding-stars-radioactive-molecules.html [July 30, 2018]

*******************************

S. Jayabarathan (jayabarathans@gmail.com)  August 3, 2018 [R-2]

ஒளிமந்தைகள் முதிர்ந்து வயதாகும் போது, நிறை உப்பி வடிவம் பெருத்து விடுகின்றன.

Featured

சி. ஜெயபாரதன் B.E.(Hons) P.Eng (Nuclear) கனடா

+++++++++++

அகிலவெளி அரங்கிலே
முகில் வாயுவில் மிதக்கும்
காலாக்ஸி இரண்டு மோதினால்
கைச்சண்டை புரியாமல்
கைகுலுக்கிப் பின்னிக் கொள்ளும் !
கடலிரண்டு கலப்பது போல்
உடலோடு உடல்
ஒட்டிக் கொள்ளும் !
வாயு மூட்டம்
கட்டித் தழுவிக் கொள்ளும் !
கர்ப்பம் உண்டாகி
காலாக்ஸிக்கு
குட்டி விண்மீன்கள் பிறக்கும் !
இட்ட எச்சத்திலே
புதிய கோள்கள் உண்டாகும் !
ஈர்ப்புச் சக்தியால்
விண்மீனைச் சுழல வைக்கும்
காலாக்ஸி !
கோள்களை நீள்வட்டத்தில்
தன்னைச் சுற்ற வைக்கும்
விண்மீன்கள் !
முதிய ஒளிமந்தை
உடல் பெருத்து
உப்பிப் பெரிதாகும்
வடிவம் !

+++++++++++++

“நமது பால்வீதி காலாக்ஸி பக்கத்தில் நெருங்கும் ஆன்ரோமேடா காலாக்ஸியுடன் ஐந்து பில்லியன் ஆண்டுகள் கடந்து மோதப் போகிறது !  (எதிர்பார்க்கப்படும்) அந்த பிரபஞ்ச நிகழ்ச்சிக்குப் பிறகு வான மண்டலம் இரவில் எப்படித் தோன்றும் என்பது யாருக்கும் தெரியாது !”

ஆப்ரஹாம் லோப் வானியல் பேராசிரியர், ஹார்வேர்டு பல்கலைக் கழகம் (Abraham Loeb)

முதுமை அடையும் ஒளிமந்தைகள் வடிவம் பெருக்கும்.

விண்வெளியில் பயணம் செய்யும் கோடான கோடி ஒளிமந்தை களின் வயதுக்கும், வடிவத்துக்கும் ஓர் தொடர்பு உள்ளது என்று 2018 ஏப்ரல் 24 இல் புதியதோர் ஆய்வு முடிவு இயற்கை வானியல் இதழில் [Nature Astronomy] வெளியாகியுள்ளது. வெளியிட்ட குழுத் தலைவர், பேராசிரியர் மாத்யூ காலெஸ் [Matthew Colless].  அவர் ஆஸ்திரேலியா தேசீயப் பல்கலைக் கழகத்தைச் சேர்ந்தவர்.  அந்த முடிவை அறிவிக்க அவரது குழுவினர் 843 ஒளிமந்தை களை ஆய்வு செய்துள்ளார்.  “நமது பால்மய ஒளிமந்தைக்கு 13 பில்லியன் ஆண்டு வயதாகிறது.  அது முதிய வயதைக் கொண்டது.  அது நடு மையத்தில் வயதான ஒளிமந்தைகள் கொண்டு பருத்து, சுற்றுக் கரத்தில் இளமை ஒளிமந்தைகள் சுற்றிவரும் காட்சி தருவது.  இளம் ஒளிமந்தைகள் சீரிய ஒழுக்க முறையில் நடு மைய முதிய ஒளிமந்தை தட்டைச் [Galaxy Disk] சுற்றி வருகின்றன என்று கூறுகிறார் மாத்யூ காலெஸ்.

ஒளிமந்தைகளின் வயதை நிற வேறுபாட்டில் காண முடியும் என்று சொல்கிறார் கூட்டாளி விஞ்ஞானி டாக்டர் நிகோலஸ் ஸ்காட்.  அவர் சிட்னி பல்கலைக் கழகத்தைச் சேர்ந்தவர். இளமை ஒளிமந்தைகள் நீல நிறத்திலும், முதிய ஒளிமந்தை சிவப்பு நிறத்திலும் தெரிகின்றன.  நெருக்கிய உருண்டையில் [Squashed Spherical Shape] இருக்கும் ஒளிமந்தை யாவும் ஒரே வயதைக் கொண்டுள்ளன என்றும் நிகோலஸ் ஸ்காட் கூறுகிறார்.   விஞ்ஞானிகள் ஒளிமந்தை நகர்ச்சியை அளந்த கருவியின் பெயர் “சாமி” [SAMI].  அந்தக் கருவி ஆஸ்திரேலியப் பல்கலைக் கழகத்தில் உள்ள  ஆங்கிலோ ஆஸ்திரேலியன் விண்ணோக்கியில் இணைக்கப் பட்டுள்ளது.

++++++++++++++

விண்மீன்களின் மூர்க்கத்தனமான வாயுத் தூசி இயக்க விண்வெளியில் பெரும்பானமையான காலாக்ஸிகள் மோதிக் கொந்தளித்து, ஒற்றை வடிவத்தில் முழுவதும் சேர்ந்து கொள்கின்றன !  பெரிய காலாக்ஸி சிறிய காலாக்ஸியுடன் பின்னிக் கொள்வது பொதுவாக விண்வெளியில் நேரும் ஒரு சாதாரண நிகழ்ச்சியே !

டேனியல் கிறிஸ்ட்லைன் (Daniel Christlein, Astronomer Yale University)

“காலாக்ஸிகள் முட்டிக் கொள்ளும் போது ஈர்ப்புச் சக்தியால் பாதிக்கப்பட்டுச் சிக்கலான ஒரு புதிய வடிவத்தில் உருவாகி விடுகின்றது.  முதலில் அவை இரண்டும் ஒன்றை ஒன்று சுருள் வடிவத்தில் சுற்றி வருகின்றன !  வாயுவும், தூசியும் பலவிதங்களில் பிணைந்து கருந்துளைகள் தோன்றவும், குவஸார்களைத் (Black Holes & Quasars) தூண்டவும் வழி வகுக்குகின்றன.”  (Quasar is a Quasi-Steller Object which appears Starlike but emits more energy than 100 Giant Galaxies).

டாக்டர் ஆன்ரூ பங்கர் (Dr. Andrew Bunker Anglo-Australian Observatory)

“கடந்த பத்தாண்டுகளில் வானியல் விஞ்ஞானம் மூன்று முறைகளில் முற்போக்கு ஆகியுள்ளது.  முதலாவது முன்னேற்றம் : விண்வெளியில் வெகு ஆழமாக நோக்கிக் காலாக்ஸிகளின் பூர்வீக நிலையை உளவ முடிகிறது !  வடிவில்லாத வாயுவாக இருந்து பிரபஞ்சம் எப்படிப் படிப்படியாக விருத்தியடைந்து பிரமாண்ட தோரணமாக விரிந்தது என்பதை விளங்கிக் கொள்ள முடிகிறது !  இரண்டாவது முன்னேற்றம் :  பேபி பிரபஞ்சம்  எப்படி இருந்திருக்கிறது என்பதற்கு எண்ணிக்கை மிக்கச் சான்றுகள் இப்போது நமக்குக் கிடைத்துள்ளன !  என்ன விதமான கலவைக் கூறுகளை (Ingredients) பிரபஞ்சம் கொண்டிருந்தது, எப்படி அது விரிந்து கொண்டு வந்துள்ளது என்பதை நாம் அறிய முடிகிறது.  மூன்றாவது முன்னேற்றம் :  பத்தாண்டுகளுக்கு முன்பிருந்ததை விட இப்போது நாம் நோக்கும் இரவு வானம் மிக்க ஆர்வத்தைத் தூண்டும் ஓர் அற்புதமாகத் தெரிகிறது !

ராயல் மார்டின் ரீஸ், வானியல் நிபுணர் (Royal Martin Rees) (Jan 2007)

ஒளியில்லாத, காலாக்ஸிகள் உண்டாகாத, விண்மீன்கள் தோன்றாத ஒரு பிரபஞ்சத்தைக் கற்பனை செய்து பார்ப்போமா ?  மூல வாயுக்கள் கொந்தளித்து கண்ணுக்குப் புலப்படாத பிண்டத்தில் மூழ்கிய காலவெளிக் கருங்கடல் இது !  பெரு வெடிப்பு நேர்ந்து பேரொளி வீசி ஒருசில நூறாயிரம் ஆண்டுகள் கடந்து பிரபஞ்சம் அரை பில்லியன் வருடங்களாக இருள் யுகத்தில் (Dark Age) மூழ்கிக் கிடந்தது !  அதற்குப் பிறகு ஏதோ ஒன்று நிகழ்ந்து எல்லாமே மாறிவிட்டது !  அந்தப் புதிரான ஒன்று விண்மீன்களை உண்டாக்கியது !  காலாக்ஸிகளைப் படைத்தது !  மேலும் கோள்களை உருவாக்கியது !  புல், பூண்டு, விலங்கினம், மனித இனத்தைப் படைத்தது !  அந்த மகத்தான ஆதிச்சக்தி யாது ?  அகியவியல் புதிரான (Cosmology Puzzle) அந்த மூல காரணியை அறிய பல சிக்கலான கணனி மாடல்களை (Computer Models) விஞ்ஞானிகள் இப்போது வடித்து வருகிறார்கள் !

ரான் கோவன் (Ron Cowan, National Geographic Magazine)

“(பரிதிபோல்) கோடான கோடி விண்மீன்கள் கொட்டிக் கிடக்கும் வாயு, தூசி மயமான பால்வீதி காலாக்ஸியில் நாம் வசித்து வருகிறோம் !  சுமார் 2 மில்லியன் ஒளியாண்டு தூரத்துக்கு அப்பால் (நமது காலாக்ஸியை) நெருங்கி வரும் ஆன்ரோமேடா என்னும் காலாக்ஸி அசுர அளவிலும், சுருள் வடிவிலும் (Spiral Galaxy) பால்வீதியை ஒத்துள்ளது !  (இடைவெளியைக்) கணித்து வரும் போது சுமார் 3 பில்லியன் ஆண்டுகளில் இரண்டு காலாக்ஸிகளும் மோதிக் கொள்ளலாம் என்று விஞ்ஞானிகள் கருதுகிறார்கள் !  அப்படியானால் அந்த நிகழ்ச்சியில் என்ன நேரிடும் ?  பரிதியைப் போன்ற விண்மீன்கள் (ஒவ்வொன்றுக்கும் வலுவான ஈர்ப்புச் சக்தி இருப்பதால்) ஒன்றோடு ஒன்று அவை மோதிக் கொள்ள மாட்டா என்று சொல்லலாம்.  ஆனால் காலாக்ஸிகளின் பூத ஈர்ப்பு விசைகள் ஒன்றை ஒன்றை இழுத்து, சுருள் வடிவைத் திரித்து மாற்றி ஒரு பில்லியன் ஆண்டுகள் கடந்து ஒரு புதிய பெரிய நீள்வட்ட காலாக்ஸியாக (Elliptical Galaxy) உருவாகிவிடும் !”

ஜான் டொபின்ஸ்கி (John Dubinski, University of Toronto, Canada)

“பூதக்கணனிப் போலி இயக்கத்தில் (Supercomputer Simulation) பால்வீதி-ஆன்ரோமேடா மோதலை இட்டுப் பார்த்த பல ஊகிப்பு நிகழ்ச்சிகளில் ஓர் எதிர்பார்ப்பு மோதல் காட்சி (Possible Collision Scenario) இது : அந்தக் காட்சி அரங்கில் ஒவ்வொரு சுருள் காலாக்ஸியும் விண்மீன்கள் நிரம்பிய தட்டாக வைத்துச் சுற்றிலும் கோள வடிவுக் கூண்டில் கருமைப் பிண்டம் உள்ளதாக (Disk of Stars Surrounded by a Spherical Dark Matter Halo) எடுத்துக் கொள்ளப்பட்டது.  அந்தப் போலி இயக்கத்தில் 10 கோடிக்கும் மேற்பட்ட போலித் துகள்கள் (Virtual Particles) இடம் பெற்றன.  பால்வீதி காலாக்ஸி கீழிருந்து மேலே எழுந்தது !  ஆன்ரோமேடா சாய்வாக மேலிருந்து கீழ்நோக்கி நெருங்கியது.  காணப்படும் தளத்தின் அகலம் : ஒரு மில்லியன் ஒளியாண்டு தூரம்.  நிகழ்ச்சிக்கு எடுத்துக் கொள்ளப் பட்ட காலம் : ஒரு பில்லியன் ஆண்டுகள்.  மோதலின் கொந்தளிப்பில் ஈர்ப்பு விசைகளும், அலையடிப்புகளும் பூமியின் கடல் கொந்தளைப்பு போல் சிக்கலான விளைவுகளை உண்டாக்கி காலாக்ஸியை மாற்றி அமைத்தன !  ஒவ்வொரு காலாக்ஸி விண்மீன்களின் ஈர்ப்பு விசைகளும், கருமைப் பிண்டமும் பின்னி, ஊடுருவி, பெயர்த்து, திரித்து இறுதியில் ஒரு புதிய நீள்வட்ட காலாக்ஸி படைக்கப் பட்டது.”

கார்டன் மையர்ஸ் (Gordon Myers’ Supercomputer Simulation)

பரிதி மண்டலம் சுற்றும் நமது பால்வீதி காலாக்ஸி

பால்வீதி மந்தையின் மில்லியன் கணக்கான விண்மீன்க¨ளைத் தனது பூர்வீகத் தொலைநோக்கியில் முதன்முதல் கண்டவர் இத்தாலிய விஞ்ஞானி காலிலியோ !  இப்போது பால்வீதி மந்தையில் 200 பில்லியனுக்கும் மேலாக விண்மீன்கள் சுற்றிக்கொண்டு வருகின்றன !  மேலும் பால்வீதியில் பரிமாணம் கூற முடியாத பேரளவில் அகிலமீனின வாயும் தூசியும் (Interstellar Gase & Dust) மண்டிக் கிடக்கின்றன.   பூமியிலிருந்து இரவில் வான்வெளியை நோக்கினால் பால்மய வண்ணத்தில் தூரிகையில் வரைந்தால் போல் தெரிவதால் அந்தப் பெயர் அளிக்கப்பட்டது !  சுருள் காலாக்ஸியான (Spiral Galaxy) நமது பால்வீதியின் ஒரு கரமான ஓரியன் வளைவில் (Orion Arm) நமது சூரிய மண்டலம் வசித்து வருகிறது !

18 ஆம் நூற்றாண்டில் வானியல் விஞ்ஞானிகளான வில்லியம் ஹெர்செல் அவரது சகோதரி கரோலின் ஹெர்செல் (William Herschel & Caroline Herschel) இருவரும் பல்வேறு விண்மீன்களின் இடைத் தூரங்களைப் பல்வேறு திசைகளில் கணித்தனர்,  பால்வீதி காலாக்ஸி தட்டு போல் அமைந்த விண்மீன் முகில் என்றும் நமது பரிதி பால்வீதி மையத்தில் இருப்பதாகவும் கூறினார்.  1781 ஆம் ஆண்டில் சார்லஸ் மெஸ்ஸியர் (Charles Messier) வான வெளியில் மங்கல் பொட்டு ஒளிகளான (Faint Patches of Light) பல்வேறு நிபுளாக்களை பதிவு செய்து அவற்றை எல்லாம் சுருள் நிபுளாக்கள் (Spiral Nubulae) என்ற வகுப்பில் பிரித்தனர்.  20 ஆம் நூற்றாண்டில் வானியல் நிபுணர் ஹார்லோ ஸேப்லி (Harlow Shapely) கோள் வடிவில் உள்ள விண்மீன் கொத்துக்கள் (Globular Star Clusters) பரவி இருப்பதையும், அவை இருக்கும் தளங்களையும் அளந்து பால்வீதி மந்தையின் மையம், பூமியிலிருந்து 28,000 ஒளியாண்டு தூரத்தில் இருக்கிறது என்றும், விண்மீன் தோரணங்களான ஸாகிட்டாரியஸ், ஸ்கார்ப்பியோ (Constellations Sagittarius & Scorpio) இரண்டுக்கும் அருகில் உள்ளது என்றும், பால்வீதி மையம் தட்டாக இல்லாமல் ‘ஆப்பம் போல்’ (Pan Cake) நடுவில் தடித்த தென்றும் அறிவித்தார்கள் !

மெஸ்ஸியர் கூறிய சுருள் நிபுளா பிரபஞ்சத் தீவுகள் அல்லது காலாக்ஸிகள் (Island Universe or Galaxy) என்று பின்னால் ஹார்லோ ஸேப்லி தர்க்கம் செய்தார்.  1942 இல் வானியல் விஞ்ஞானி எட்வின் ஹப்பிள் (Edwin Hubble) தனது புதிய மிகப் பெரும் 100 அங்குலத் தொலைநோக்கி மூலம் உளவித் தர்க்கங்களுக்கு முற்றுப் புள்ளி வைத்தார்.

பேபி பிரபஞ்சத்தில் நேர்ந்த காலாக்ஸிகளின் மோதல்கள் !

பிரபஞ்சத்தில் நேரும் காலாக்ஸி மோதல்கள் பலவற்றைக் கண்கவரும் வண்ணப் படங்களில் ஹப்பிள் தொலைநோக்கி எடுத்துள்ளது !  அந்த ஹப்பிள் படத்தொகுப்பில் (Hubble Atlas) சில காலாக்ஸிகள் மோதுகின்றன !  சில காலாக்ஸிகள் பங்கெடுத்துப் பேரளவில் பின்னிச் சேர்ந்து கொள்கின்றன !  காலாக்ஸிகள் முட்டிக் கொள்ளும் போது ஈர்ப்புச் சக்தியால் பாதிக்கப்பட்டுச் சிக்கலான ஒரு புதிய வடிவத்தில் உருவாகி விடுகின்றது.  முதலில் அவை இரண்டும் ஒன்றை ஒன்று சுருள் வடிவத்தில் சுற்றி வருகின்றன !  வாயுவும், தூசியும் பலவிதங்களில் பிணைந்து கருந்துளைகள் தோன்றவும், குவஸார்களைத் (Black Holes & Quasars) தூண்டவும் வழி வகுக்குகின்றன.” (Quasar is a Quasi-Steller Object which appears Starlike but emits more energy than 100 Giant Galaxies).

காலாக்ஸிகள் பின்னிச் சேர்ந்து கொள்ளும் போது விண்மீன்கள் வெடித்துப் பிறக்கின்றன !  அப்போது நீண்ட வாயு முகில் அலை வால்கள் (Tidal Tails of Gas & Dust) காலாக்ஸிகளைச் சுற்றி முளைக்கின்றன !  காலாக்ஸியில் பெரும்பகுதி வெற்றிடமாக உள்ளதால் அவை மோதிக் கொள்ளும் போது சிதைவடைவதில்லை.  பூர்வீக காலத்தில் பேபி பிரபஞ்சத்தில் பக்கத்தில் இருந்த காலாக்ஸிகளிடையே சேர்ப்புகள், கலப்புகள் பல நூறு மில்லியன் ஆண்டுகளாய் நிகழ்ந்து வந்துள்ளன.  இப்போது வானியல் நிபுணர் சுமார் ஒரு மில்லியன் காலாக்ஸிகளின் மோதலை அருகில் உள்ள பிரபஞ்சத்தில் காண்கிறார்கள்.

ஆன்ரோமேடா காலாக்ஸி (Andromeda Galaxy or Messier Object # M31) பால்வீதி மந்தைக்கு அருகில் பூமிக்கு அப்பால் 2.2 மில்லியன் ஒளியாண்டு தூரத்தில் உள்ளது.  பொதுவாக வானியல் நிபுணர் விண்வெளித் தூரங்களை “மெகாபார்செக்ஸ்” (Megaparsecs – Mpc) (One Mpc = 3.26 Million Light Years) (One parsec = 3.26 Light Years = Unit Distance Between Earth & Sun) அளவீட்டில் குறிப்பிடுகிறார்கள்.

நமது பால்வீதியும் கடந்த பல பில்லியன் ஆண்டுகளாய்ப் பல சிறு காலாக்ஸிகளை இழுத்துத் தன்னுடன் சேர்த்துப் பின்னிக் கொண்ட ஒரு சேர்க்கை காலாக்ஸிதான் !  அதுபோல் நமது பூத அண்டை காலாக்ஸி ஆன்ரோமேடா பின்னொரு யுகத்தில் நமது பால்வீதியைப் பற்றித் தன்னுடன் சேர்த்துக் கொள்ளும் என்று நம்பப் படுகிறது !  ஆன்ரோமேடா காலாக்ஸி நமது பால்வீதி காலாக்ஸியை மணிக்கு 216,000 மைல் வேகத்தில் (348,000 Km/Hr) நெருங்கி வருகிறது !  இன்னும் 2 பில்லியன் ஆண்டுகள் கடந்து இரண்டும் பூத நீள்வட்ட வடிவத்தில் புதிய காலாக்ஸியாக “மில்கோமேடா”  (Milky Way + Andromeda =Milkomeda) என்னும் பெயரில் நடமாடி வரும் !

காலாக்ஸிகள் சேர்ந்து கொள்ள இரண்டு நிபந்தனைகள்

ஒன்றை ஒன்று நெருங்கும் இரண்டு காலாக்ஸிகள் சேர்ந்து கொள்ள இரு நிபந்தனைகள் பூர்த்தியாக வேண்டும் !

1.  அவை இரண்டும் பக்கத்தில் இருந்து ஒப்புமை நிலையில் ஒன்றை நோக்கி ஒன்று நகர்ந்து நெருங்கி வரவேண்டும் !

2.  அவை இரண்டும் ஒப்புமை வேகத்தில் மெதுவாகப் பயணம் செய்து ஒன்றை ஒன்று நெருங்கி வரவேண்டும் !

காலாக்ஸிகள் வெகு தூரத்தில் இருந்தால் அவற்றின் ஈர்ப்பாற்றல் விசை நலிந்து போய் ஒன்றை ஒன்று இழுத்துக் கொள்ள வலு இருக்க முடியாது.   அவை நெருங்கும் போது விரைவாகச் சென்றால் பற்றிக் கொள்ள முடியாது கப்பல்கள் இரவில் கடப்பது போல் நழுவிச் செல்லும் !

ஒரே பரிமாணத்தில் இல்லாது வெவ்வேறு அளவில் உள்ள இரு காலாக்ஸிகள் மெதுவாக நெருங்கி வந்தால்,  பெரிய காலாக்ஸி, சிறு காலாக்ஸியைத் தன்வசம் இழுத்துக் கொண்டு தன்னுரு சிதைந்து மாறாமால் பார்த்துக் கொள்கிறது !  அதாவது பெருங்காலாக்ஸி சுருள் காலாக்ஸியாக இருந்தால் அதன் வடிவம் மாறுவதில்லை !

ஏக அளவுள்ள, ஒரே மாதிரியான இரண்டு காலாக்ஸிகள் ஒன்றை நோக்கி ஒன்று நெருங்கும் போது, ஒளி வேடிக்கைகள் கிளம்பி ஏராளமான வாயுப் பிண்டம் சிதறி வால்களாய் நீண்டு வெளியே எறியப் படுகின்றன !  பிறகு அவையெல்லாம் ஈர்ப்புச் சக்தியால் வாயு முகிலாய் இழுத்துச் சுருக்கிப் புதிய விண்மீன்கள் பிறக்கின்றன !  அலங்கோலமான கொந்தளிப்புக்குப் பிறகு புதிய காலாக்ஸியில் சீரொழுக்கம் மீண்டும் (Re-order After Chaotic Condition) நிலைபெறுகிறது !

பால்வீதிச் சீரமைப்பு பற்றி விஞ்ஞானிகள் அறிந்த விபரங்கள்

நமது காலாக்ஸி பால்வீதி பல்வேறு சிறு காலாக்ஸிகள் சேர்ந்த ஓர் இணைப்புக் காலாக்ஸியாக விஞ்ஞானிகள் கருதுகிறார்.  பேபி பிரபஞ்சத்தில் முதலில் காலாக்ஸிகள் உருவாகும் போது பலச் சிறு பூர்வாங்க காலாக்ஸிகளைப் (Proto-Galaxies) பின்னிக் கொண்டு வடிவாகின என்று தெரிகிறது.  பால்வீதி காலாக்ஸி முதல் சில பில்லியன் ஆண்டுகளில் 100 உட்பட்ட சிறு பூர்வாங்க காலாக்ஸிகளைப் பிடித்து உருக்குலைத்துச் சேமித்து உண்டானது என்று விஞ்ஞானிகள் எண்ணுகிறார்.  மேலும் கடந்த சில மில்லியன் ஆண்டுகளாக 5 முதல் 11 சிறு காலாக்ஸிகளைப் பின்னிக் கொண்டது என்றும் விஞ்ஞானிகள் சான்றுகள் காட்டுகிறார்.  இம்மாதிரி காலாக்ஸி சேர்ப்புகள் பிரபஞ்ச விண்வெளியில் பெருத்த வான வேடிக்கைகளை நிகழ்த்துவதில்லை என்றும் கவனித்துள்ளார் !

(தொடரும்)

 ++++++++++++++++++++++++++

தகவல்:

Picture Credits: NASA, JPL; National Geographic; Time Magazine, Discovery, Scientific American & Astronomy Magazines.

1. Our Universe – National Geographic Picture Atlas By: Roy A. Gallant (1986)
2. 50 Greatest Mysteries of the Universe – What Happens When Galaxies Collide ? & Will the Milky Way Merge with Another Galaxy (Aug 21, 2007)
3. Astronomy Facts File Dictionary (1986)
4. The Practical Astronomer By Brian Jones & Stephen Edberg (1990)
5. Sky & Telescope – Why Did Venus Lose Water ? [April 2008]
6. Cosmos By Carl Sagan (1980)
7. Dictionary of Science – Webster’s New world [1998]
8. The Universe Story By : Brian Swimme & Thomas Berry (1992)
9. Atlas of the Skies – An Astronomy Reference Book (2005)
10 Hyperspace By : Michio kaku (1994)
11 Universe Sixth Edition By: Roger Freedman & William Kaufmann III (2002)
12 Physics for the Rest of Us By : Roger Jones (1992)
13 National Geographic – Frontiers of Scince – The Family of the Sun (1982)
14 National Geographic – Living with a Stormy Star – The Sun (July 2004)
15 The World Book of Atlas : Anatomy of Earth & Atmosphere (1984)
16 Earth Science & Environment By : Dr. Graham Thompson & Dr. Jonathan Turk (1993)
17 The Geographical Atlas of the World, University of London (1993).
18 Hutchinson Encyclopedia of Earth Edited By : Peter Smith (1985)
19 A Pocket Guide to the Stars & Planets By: Duncan John (2006)
20 Astronomy Magazine – What Secrets Lurk in the Brightest Galaxies ? By Bruce Dorminey (March 2007)
21 National Geographic Magazine – Dicovering the First Galaxies By : Ron Cowen (Feb 2003)
22 Astronomy Magazine – All About Galaxies [March 2008]
23 Astronomy Magazine – Our Galaxy’s Collision with Andromeda -5 Billion Years A.D. Our Galaxy’s Date with Destruction By : Abram Loeb & T.J. Cox [June 2008]
24 Milky Way – Andromeda Galaxy Collision By : John Dubinski (University of Toronto)
25 Galaxies in Collision (http://spacescience.spaceref.com/
26 On a Collision Course or Uniting as an Intergalatic Super System By : Chee Chee Leung [April 25, 2008]
27 The Merger of the Milky Way & Andromeda Galaxies By : John Dubinski (University of Toronto) (Jan 2001)

28. https://phys.org/news/2018-04-milky-bigger.html#nRlv  [April 2, 2018]

29.https://phys.org/news/2018-04-galaxies-bigger-puffier-age.html  [April 23, 2018]

30.  http://www.spacedaily.com/reports/Galaxies_grow_bigger_and_puffier_as_they_age_999.html   [April 24, 2018]

******************
S. Jayabarathan  ( jayabarathans@gmail.com ) [June 24, 2018] [R-1]